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Abstract

We consider cut-and-project sequences � for which there exists a self-similarity factor � such

that �� � �. We show that a large class of them is closely related to substitution systems. In

particular, we show that there exist a substitution system and suitable lengths of letters such

that � may be identi�ed with a �xed point of the substitution.
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1 Introduction

We consider real strictly increasing sequences � =

fxn j n 2 Zg where the set of distances fxn+1 �
xn j n 2 Zg between adjacent points is �nite.

There are two well-known way how to obtain

such sequences. The �rst construction is so called

cut-and-project scheme, where (m+1)-dimensional

lattice Zm+1 � Rm+1 is projected to a real line

V1.

Let Rm+1 = V1 � V2. Denote by �1 and �2
the projections on V1 and V2, resp. If 
 � V2 is

a convex set with nonempty interior then

� = �(
) = f�1(x) j x 2 Zm+1 ; �2(x) 2 
g ;
(1)

is a set with �nite number of distances between

neighbouring points. Moreover, such �(
) has

so called Meyer property, i.e. there exists �nite

set F such that �(
)� �(
) � �(
) + F .

The second way to obtain strictly increasing

sequences fxn j n 2 Zg, where fxn+1 � xn j
n 2 Zg is �nite, is based on substitution rules

which produce bidirectional in�nite word in a �-

nite alphabet. One may associate each letter of

the alphabet with some length and put bricks of

these lengths on a real line according to the order

of letters in the word.

Generaly, these two types of sequences have

di�erent properties. If we focus our attention

only to sequences which are selfsimilar (i.e. there

exists a nontrivial factor � such that �� � �),

the situation is changed.

Bombieri and Taylor showed in [1] that if

a sequence � arose from a substitution rule for

which the Perron-Frobenius eigenvalue � of the

substitution matrix is a Pisot number then it is

possible to chose lengths corresponding to letters

in such a way that � is contained in a cut-and-

project sequence and � is a selfsimilarity factor

of �.

On the other hand, it is known [3] that if �

is a sel�similarity factor of the cut-and-project

sequence � then � is a Pisot or Salem number.

In this contribution, we would like to discuss the

question opposite to those of Bombieri and Tay-

lor: Which selfsimilar cut-and-project sequences

can be generated by a substitution rule?

We will demonstrate relationship between cut-

and-project sequences and substitution rules on

the case of a projection of two dimensional lattice

Z2 into a real line. Let � be a sequence given by

(1) where m = 1. The presence of a nontrivial

selfsimilarity � then forces � to be a quadratic

Pisot number and the slope � of the line V1
and the slope 
 of V2 are forced to be mutually

conjugate elements of the quadratic �eld Q[�].

Let us restrict to � which is a quadratic unitary

Pisot number. All such numbers � are given by

quadratic equations x2 = mx + 1, m 2 N , or

x2 = mx � 1, m 2 N , m � 3. Such equations

have two mutually conjugate roots, say

� =
m+

p
m2 � 4

2
and �0 =

m�
p
m2 � 4

2

which means that � > 1 and j�0j < 1. For such a

number �, the de�nition (1) of � can be rewrit-

ten as

� = �(
) = fa+ b� j a; b 2 Z ; a+ b�0 2 
g
(2)

where 
 is a bounded non empty interval in R.

We shall assume (without loss of generality) that


 contains the origin. The elements of the se-

quence may be enumerated in such a way that

� = (xn)n2Z is a strictly increasing sequence and

x0 = 0. It can be derived from the 3-gap theo-

rem [4] that such a � has at most three (2 or 3)

possible distances xn+1 � xn between adjacent

points for any choice of the interval 
.

One may describe (see [5]) all selfsimilarities

of such point sets. In particular, we shall be

interested in all the factors s for which s� � �

(i.e. selfsimilarities �xing the origin). It may be
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easily shown that all such factors should be of the

form s = a+ b�, a; b 2 Z and s0 := a+ b�0 being

0 < s0 < 1. For our construction of substitution

rules, we will make use of the factor s = �2.

2 Substitution systems

The relation between the sequences (2) and sub-

stitution rules has been recognized by many au-

thors. An easy example can be seen on the well

known Fibonacci chain. Consider a sequence

�, based on the golden mean irrationality � =

� = 1

2
(1 +

p
5) with the interval 
 of the unit

length. In this case, the distances between ad-

jacent points of � have only two possible values

f�; �2g. The sequence � is created by the sub-

stitution
A ! AB

B ! A

If we start with a pair of letters BjA and carry

out the substitution, we produce step by step

BjA! AjAB ! ABjABA ! ABAjABAAB ! ABAABjABAABABA ! � � �

After an in�nite number of steps, one obtains

an in�nite word in the alphabet fA;Bg which is

invariant with respect to the substitution. One

may imagine letters as tiles of given lengths layed

down onto the real line starting from the origin

in the order prescribed by the in�nite word. As-

sociating the lengths l(A) = �2 and l(B) = 1

to the letters and the origin to the delimiter j,
we obtain the division of the real line as by the

point set �.

In a similar way, the substitutions A! AmB,

B ! A correspond to sequences based on �2 =

m� + 1, with 
 of the unit length.

Generally, a substitution system is given by

a �nite alphabet A = f�1; : : : ; �kg and a sub-

stitution rule � : A! A�, which assigns to each

letter �i a word �(�i) in the alphabet A. We say

that a bidirectional in�nite word

w = : : :�i
�3
�i
�2
�i
�1
j�i0�i1�i2�i3 : : :

is a �xed point of our substitution i�

w = : : :�(�i
�3
)�(�i

�2
)�(�i

�1
)j�(�i0)�(�i1)�(�i2)�(�i3) : : :

An in�nite word w may be represented on the

real axis in the following way. We associate to

each letter �i a length l(�i), and starting from 0

forwards and backwards we put side-by-side tiles

of length l(�i) according to the order of letters

in the in�nite word w.

Naturally, one may associate a matrix P with

non negative entries Pij , i; j = 1; : : : ; k to a given

substitution �. The element Pij is the number of

letters �j in the word �(�i). The substitution is

said to be primitive, if there exists an exponent

k 2 N such that P k
ij > 0 for each i; j. If the sub-

stitution is primitive then the largest eigenvalue

� of P is called the Perron-Frobenius eigenvalue

and the eigenvector v corresponding to � has pos-

itive entries v = (v1; : : : ; vk). If we set l(�i) = vi,

then the point set associated to a �xed point w

of the substitution � has a self-similarity with

respect to the origin with the scaling factor �.

It can be also shown, that the entries ~vi of the

eigenvector ~v = (~v1; : : : ; ~vk) of the transposed

matrix PT corresponding to the same eigenvalue

�, determine the relative frequences of letters �i
in the in�nite word w.

Apparently, all the examples of substitutions

related to cut-and-project sets found in litera-

ture, are given only for special intervals 
, which

reduces the amount of such examples to one per

a given irrationality. In this article, we explain

that for a �xed quadratic unitary Pisot num-

ber there is an in�nite family of substitution

rules producing non equivalent three-distance se-

quences. In particular, we provide a necessary

and su�cient condition for an interval 
 in or-

der that there exist a substitution system and

suitable lengths of letters such that � may be
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identi�ed with a �xed point of the substitution.

This would mean that � may be built starting

from two tiles - left and right neighbours of zero

- using repeated iterations of the substitution �.

3 Substitutions for the three-distance

sequences

For convenience, we shall state all the results for

the most simple example of a quadratic unitary

Pisot number, the golden ratio � . Here � = 1

2
(1+p

5) and � 0 = 1

2
(1 �

p
5) are two roots of the

quadratic equation x2 = x + 1. We denote the

set Z[� ] := Z + Z� and, for any element x =

a + b� 2 Z[� ], we de�ne x0 = a + b� 0. Z[� ]

denotes the ring of integers in Q[� ], the mapping
0 is the Galois automorphism on this �eld. It is

everywhere discontinuous. With such a notation,

let us recall the de�nition of a sequence �(
),

�(
) := fx 2 Z[� ] j x0 2 
g ;

where 
 is a bounded non empty interval in R.

In order that 0 be a member of �, we need 0 2 
.

On an easy example of a sequence �(
) with


 = [0; 1+1=�3), we shall describe the algorithm

for obtaining the substitution rule.

As it was mentioned, there are three di�er-

ent distances between adjacent members of the

sequence �: small one S = 1, middle one M = �

and large one L = �2. Directly from the de�ni-

tion of �, one may generate several right and left

neighbours of the origin.

: : : x�3 = ��3 � � x�2 = ��3
x�1 = �� x0 = 0 x1 = 1

x2 = �2 x3 = 2�2 x4 = �4

x5 = �4 + 1 x6 = �4 + �2 + 1 : : :

The important property for generating the se-

quence � is that, for any point xn 2 �, we are

able to determine its �rst right neighbour. In

particular, we have in our case

(i) xn is followed by the distance S, i.e. xn+1 =

xn + 1, i� x0n = [0; 1=�3) =: 
S .

(ii) xn is followed by the distanceM , i.e. xn+1 =

xn + � , i� x0n = [1=�; 1+ 1=�3) =: 
M .

(iii) xn is followed by the distance L, i.e. xn+1 =

xn + �2, i� x0n = [1=�3; 1=�) =: 
L.

Assume that we have generated the whole

sequence � = �[0; 1 + 1=�3). Multiplying this

set by its self-similarity factor �2, we obtain the

set �2� whose adjacent points have distances

�2S, �2M , and �2L. Since generally we have

�2�(
) = �(
=�2), we obtain

�2�

�
0; 1+

1

�3

�
= �

�
0;

1

�3
+

1

�5

�
� �

�
0; 1 +

1

�3

�
:

Let us �ll in the gap following the point �2xn
in �2� where xn+1 = xn + 1 i.e., the point xn
was followed by S in �. For such an xn, the

case (i) was necessarily true which means that

x0n 2 [0; 1=�3). The rescaled point �2xn has the

Galois image (�2xn)
0 = x0n=�

2 2 [0; 1=�5) � 
S .

Therefore, the �rst right neighbour of the point

�2xn in � is y1 = �2xn + S. Since y01 = x0n=�
2 +

1 2 [1; 1 + 1=�5) � 
M , the next member of

the sequence � will be the point y2 = y1 +M =

�2xn+S+M . For the point y2, it holds that y
0

2 =

x0n=�
2+1�1=� 2 [1=�2; 1=�2+1=�5). Therefore

y2 2 �[0; 1=�2 + 1=�5) = �2�[0; 1 + 1=�3) and

hence we have already found all members of the

sequence � in the gap �2S between points �2xn
and �2xn+1.

Since for any member of �, which is followed

by the distance S, we may carry out the same

considerations we may conclude that all small

gaps S after rescaling by the factor �2 are �lled

in the same way, namely by distances S and M

in this order. Symbolically, we write S ! SM .

Using the same procedure, we may obtain that

M ! LM and L ! SMLM . Note that the

left neighbour of the origin in the sequence � is
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the point x�1 = �� , corresponding to the gap

M , and the �rst right neighbour of 0 is x1 =

1, corresponding to the gap S. Thus from the

starting pair M jS by repeated multiplication by

the factor �2 and by �lling the stretched gaps

according to the derived rules, we may generate

the entire sequence �[0; 1+ 1=�3),

M jS ! LM jSM ! SMLMLM jSMLM !
! SMLMSMLMLMSMLMLM jSMLMSMLMLM ! : : :

Not always the situation is so favourable as

in the previous example. >For di�erent interval


, it may happen that not all the gaps labeled

by the same letter, say M , are after multipli-

cation by the self-similarity factor �lled in the

same way. Nevertheless, we may be able to di-

vide these gapsM into a �nite number of groups

M1; : : : ;Mk, in order that all gaps within the

same group Mi are �lled equally. For example,

the sequence � = �[0; 1 + 1=�2) is generated by

the substitution rule

S ! SM2

M2 ! SM2M1

M2 ! LM1

L ! SM2LM1

The lengths of the gaps denoted by M1 and M2

are of course both equal to �2. Such a substitu-

tion rule uses instead of a three letter alphabet

an alphabet consisting of four letters fS;M1;M2; Lg.
The necessary and su�cient condition for an

interval 
 in order that the corresponding � could

be obtained using substitution rules is stated in

the following theorem.

Theorem 3.1. [2] There exists an alphabet A =

fa1; : : : ; akg, k � 2, and a substitution � : A !
A�, reproducing the sequence �[c; d) starting from

0 if and only if c; d 2 Q[� ].

If c; d 2 Q[� ] and y 2 �[c; d) � Z[� ], then

c�y0; d�y0 2 Q[� ] and �[c; d) = y+�[c�y0; d�

y0). This simple property which may be easily

proven directly from the de�nition (2), has an

interesting consequence: If it is possible to �nd a

substitution which generates the given sequence

� starting form the origin then for any element

x 2 �, there exists another substitution generat-

ing � from the point x.

4 Comments

Let us make several comments to the above re-

sults.

� If 
 is an interval of the type [c; d], (c; d) or

(c; d], we may stipulate similar assertion as

in Theorem 3.1. In the case that c; d 2 Z[� ]

and 
 = [c; d], or 
 = (c; d), the substi-

tution rule is not primitive, it means that

there does not exist a positive power P k of

the matrix corresponding to the substitu-

tion rule, having all elements strictly posi-

tive.

� If the de�nition of � involves a quadratic

unitary Pisot number distinct from the golden

ratio, the substitution rules may be derived

in the same way.

� For cubic irrationalities, the construction

of substitution rules is remarkable more com-

plicated. Consider � > 1, the root of the

equation x3 = 2x2 � x + 1 and denote by

�0 and �00 the other two roots of the equa-

tion. Then a sequence � may be de�ned,

in analogue to (2), by

� = �(
1;
2) = fa+b�+c�2 j a; b; c 2 Z ; a+b�0+c�0
2 2 


Such a sequence has 9 to 11 types of dis-

tances between adjacent points [6] depend-

ingly on the intervals 
1 and 
2. While for

the quadratic case, the di�erent letters cor-

respond to subintervals 
S , 
M , and 
L of

the original 
, for the cubic irrationalities,
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a given type of gap is related to a connected

region of the rectangle 
1 � 
2.

� In [1], Bombieri and Taylor present a 3-

distance sequence generated by substitu-

tion

a! aac ; b! ac ; c! b

with characteristic equation of the substi-

tution matrix x3 = 2x2 � x + 1. Because

of the small number of distances, such a

sequence is only a proper subset of some

�(
1;
2).
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