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Abstract

In this paper we focus on point sets arising from a general cut and project scheme (`model

sets'). We illustrate that only certain schemes may produce model sets with self-similarities. In

this case the model set is based on a Pisot number and the structure of self-similarities is very

rich. We recall the notion of �-convexity (Pinch) and show that the model set is �-convex for an

in�nity of self-similarity factors �. However, not all �-convex sets can be identi�ed with model

sets.
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1 Introduction

A point set � � Rn modelling recently discov-

ered physical quasicrystals, should have several

attributes. First of all, it should satisfy the De-

lone property (i.e. (i) the distances between any

pair of points are greater than a �xed " > 0, (ii)

there exists r > 0, such that the entire space is

covered by balls of radius r centered at points

of �). Secondly, � should be aperiodic (with-

out any periodic subsets), and repetitive (any

�nite con�guration of points of � is repeated in-

�nitely many times in �). In our contribution

we provide an algebraic de�nition of such point

sets, calling them `model sets'. The elements of

a model set � may be coordinatized by integers

in an algebraic �eld. More precisely, � is a sub-

set of a Z[�]-module, where Z[�] is the ring of

integers in the extension Q[�] of rationals Q by

an algebraic number �. The acceptance condi-

tion, which choses suitable points of the Z[�]-

module to � is formulated using the Galois au-

tomorphisms on Q[�]. For an introduction to

model sets and their basic properties we refer to

the contribution of J. Patera [7].

The algebraic de�nition of model sets cor-

responds to a special case of the so-called cut

and project scheme. Consider a Z-lattice L =Pn
i=1 Zwi � Rm+n, where w1; : : : ; wn+m is a ba-

sis of Rn+m. Choose two subspaces V1 and V2,

with dimV1 = n, dimV2 = m, and V1 � V2 =

Rm+n. The projections on V1, V2 are denoted by

�1 and �2. The choice of the subspaces should

be done in such a way that �1 restricted to L is a

1-1 mapping and �2(L) is dense in V2. One con-

siders a bounded region 
 � V2, with non empty

interior and such that 
� = 
. Then a model

set � is de�ned as

� = f�1(x) j x 2 L ; �2(x) 2 
g ; (1)

and 
 is called the acceptance window of �. It

was shown in [6] that any model set is a Meyer

set, i.e. is Delone and satis�es the condition ��
� � �+F , where F is a �nite set. In [5] one �nds

there the following theorem concerning Meyer

sets.

Theorem 1.1 (Y. Meyer). If � is a Delone

set satisfying � � � � � + F , for a �nite set

F , and if there exists a factor � > 1, such that

�� � �, then � is a Pisot or Salem number, i.e.

� is an algebraic integer and all the Galois con-

jugates of � are in modulus less than 1 (strictly

less for Pisot numbers, less or equal to for Salem

numbers).

Due to the above theorem, model sets with a

self-similarity arise only in certain cut and project

schemes. In Section 2 we illustrate on the simpli-

est example, that if a model set � 2 Rn has the

self-similarity factor �, then the coordinates of

� belong to the algebraic �eld Q[�]. For such �

we determine in Section 3 the semigroup of a�ne

symmetries. It turns out that any element of a

model set � is a self-similarity center, i.e a �xed

point of some a�ne transformation. To any such

self-similarity center there correspond in�nitely

many a�ne mappings, having di�erent scaling

factors.

If for a �xed factor � a point set � satis�es

�(� � x) � � � x for all elements x 2 �, then

� is called �-convex. The notion of �-convexity

was introduced by R. G. E. Pinch in [9]. Model

sets with their abundant a�ne symmetries are

�-convex for a large family of factors �. We

show that only for certain of these factors any

�-convex set can be identi�ed with a model set.

For other factors one may expect existence of

new interesting self-similar structures.

2 Algebraic de�nition of model

sets

In this Section we illustrate the Meyer theorem

mentioned above. We explain how a cut and
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project scheme, which produces a self-similar struc-

ture, is related to algebraic numbers. We provide

an algebraic de�nition of model sets.

First of all, let us explain what we mean by a

self-similarity of a point set. A self-similarity of

an n-dimensional point set � is an a�ne transfor-

mation T : Rn ! Rn, de�ned for � 2 R, t 2 Rn,

by

Tx := �x+ t ; x 2 Rn ; (2)

which maps � into itself. In general, we may

consider T to include also an orthogonal trans-

formation R 2 O(n;R), i.e. Tx := �Rx+ t, but

this is outside of the aims of this contribution.

Thus the action of a self-similarity reduces to a

rescaling by a factor � and a translation by a

vector t.

Let us assume that we have a model set �

constructed from a cut and project scheme with

a lattice L in Rn+m, the dimensions of V1, V2
being dimV1 = n, dimV2 = m. According to (1),

� is a subset of �1(L), which is a Z-module in

V1. If � is to have a self-similarity with a factor

� > 1, the same should be valid for the Z-module

�1(L), i.e. we require ��1(L) � �1(L).

A su�cient condition for a model set � of (1)

with the acceptance window 
 to have a self-

similarity factor � is given in [2].

Proposition 2.1. Let w1; : : : ; wm+n be a basis

of Rm+n such that L =
P

Zwi. For � 2 R,

�0 2 (�1; 1) we denote by C the mapping C :=

��1+�
0�2. Assume that following conditions are

satis�ed.

(i) The matrix of C in the basis wi, i = 1; : : : ; m+

n, has integer entries.

(ii) There exists v 2 L such that T 0(
) := �0
+

�2(v) maps 
 into itself, T 0(
) � 
.

Then the mapping T : Rn ! Rn, acting by Tx :=

�x + �1(v), is a self-similarity of the model set

� = �(
).

Practically, from all the pairs �, �0 satisfying

(i), one chooses those which verify (ii) for given

acceptance window 
. Let us see what implica-

tions the assumption (i) has on the considered

cut and project scheme.

Note that if the matrix of the mapping C =

��1 + �0�2 in the basis wi has integer entries,

then C preserves the lattice L. Simple algebraic

manipulations allow us to �nd that if there exist

such � and �0, then � is an algebraic integer of

degree 2 (solution of a quadratic equation with

integer coe�cients), and the number �0 belongs

to the quadratic �eld Q[�]. Moreover, it turns

out that �, �0 are related by the Galois auto-

morphism of the �eld, 0 : x 7! x0. Futher we

�nd that the matrices of projections �1, �2 in the

basis wi have entries in Q[�], and that �0
2
= �1

componentwisely. This in turn implies, that the

matrices of the two projections have the same

rank and therefore the dimensions of the sub-

spaces V1, V2, are equal.

We may conclude that the cut and project

scheme should have the following form: We project

the points of a lattice L =
P

2n
i=1 Zwi � R2n to

the subspaces V1, V2 with dimV1 = dim V2 = n.

Their orientation is given by the conditions on

matrices of the projections �1, �2. In order that

� is a self-similarity of a model set �, we need to

assume moreover that �0
+�2(v) � 
, for some

v 2 L, (see assumption (ii) of Proposition 2.1). It

follows that j�0j < 1, and hence � is a quadratic

Pisot number.

We have explained how the presence of a self-

similarity forces the cut and project scheme to

have certain properties, which allow us to rewrite

the de�nition of a model set in an algebraic way,

based on an algebraic number �. We shall fo-

cus on the case if � is a quadratic unitary Pisot

number.

Let � and �0 be the roots of the quadratic

equation x2 = m� + 1, m 2 N , or x2 = m� � 1,

m 2 N ,m � 3. We choose for � the larger of the
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roots, therefore � > 1 and j�0j < 1. In particular

��0 = �1, which is why � is called a quadratic

unitary Pisot number. Denote Z[�] := Z + Z�.

In general, Z[�] is a subring of the ring of integers

of the quadratic �eld Q[�]. The correspondence

� ! �0 gives the Galois automorphism on Q[�].

For an x 2 Q[�], i.e. x = a + b�, with a; b 2 Q,

we de�ne x0 = a + b�0.

Let �i, �
�

i , i = 1; : : : ; n, be two bases of Rn.

Then a model set �(
) is de�ned by

�(
) :=

(
X =

nX
i=1

xi�i

���� xi 2 Z[�] ; X� =

nX
i=1

x0i�
�

i 2 


)
;

(3)

for a bounded non empty region 
 with 
� = 
,

which is called the acceptance window of the

model set �(
). It can be shown that this al-

gebraic de�nition corresponds to the geometric

one (1). The set �(
) is Delone [6], it contains

no periodic subsets, and under some assumptions

on 
 it is repetitive.

3 Self-similarities and �-convexity

Let us now describe the self-similarities of model

sets given by the de�nition (3). Observe that

any transformation T of the form (2) has a �xed

point u = (1��)�1t, for which Tu = u. We may

rewrite (2) in a form which tells more about the

action of T ,

Tx = �x+ (1� �)u = �(x� u) + u =: T(u;�)(x) :

(4)

If such a transformation leaves a point set � in-

variant, (T� � �), the point u is said to be the

center of the scaling symmetry, or `in
ation cen-

ter'. Our aim is to �nd, for a given center u, all

factors � such that T(u;�)(�) � �. Of course, we

shall be interested in � 6= 0; 1.

The following theorem describes a large fam-

ily of self-similarity centers, namely those, which

are elements of the model set (internal in
ation

centers).

Theorem 3.1. Let � be a quadratic unitary Pisot

number, 
 a bounded convex region in Rn. Then

�(�(
)� x) � �(
)� x ;

for any x 2 �(
) and any � 2 Z[�] such that

�0 2 [0; 1]. In other words, any element x of

a model set with convex acceptance window is

its self-similarity center for an in�nite family of

scaling factors.

In [3] it is shown that in addition to in
ation

centers among the points of �(
), the model set

has in�nitely many self-similarity centers which

are not its elements (external in
ation centers).

The family of scaling factors corresponding to

each such non trivial in
ation center u =2 �(
) is

in�nite, but not as large as for internal in
ation

centers.

Consider all the transformations T(u;�) of (4)

preserving a given model set �, i.e. with u being

any in
ation center external or internal, and �

a corresponding scaling factor. Together with

standard composition of mappings they form a

semi-group of a�ne symmetries of �.

In [9] R. G. E. Pinch indtroduces the notion

of �-convexity, which is closely connected to the

self-similarities. A point set � � Rn is called

�-convex, if

�x+ (1� �)y 2 � ; for any x; y 2 � :

According to Theorem 3.1, model sets with con-

vex acceptance windows are �-convex for any � 2
Z[�], such that 0 < �0 < 1. One may ask more

about the relation of �-convex sets and model

sets. For example, if � = �� , (i.e. � 2 Z[� ],

�0 = 1=� 2 (0; 1)), then any �-convex set � is ei-

ther dense in Rn or an n-dimensional model set.

The assertion is formulated precisely in the fol-

lowing two theorems. Their proofs may be found

in [4].

4



Theorem 3.2. Let � � Rn be a Delone (��)-
convex set. Then there exist bases �i, �

�

i of Rn,

such that � is a model set in the sense of equa-

tion (3) for some bounded region 
 with non

empty convex interior and such that 
� = 
.

Theorem 3.3. Let F � Rn be such that 0 2 F

and F spans Rn over real numbers. Let � be

the smallest (��)-convex set containing F . Then
� � Rn is Delone if and only if there exists

w1; : : : ; wn 2 F such that F �
Pn

i=1Q[� ]wi. If

this is the case, then according to Theorem 3.2,

� is a model set.

Both theorems above concern �-convex sets

for � = �� . Similar properties do not hold for

every considered �, i.e. every � 2 Z[�], such that

0 < �0 < 1. In particular, not every �-convex set

may be identi�ed with a model set based on the

corresponding irrationality. A counter example

for this is found by the following proposition.

Proposition 3.4. Let � be a quadratic unitary

Pisot number, and let � 2 Z[�], such that 0 <

�0 < 1. The smallest �-convex set, containing

f0; 1g is a model set �[0; 1] � Z[�] if � or 1� �

takes one of the three values �1

2
(1 +

p
5), �1 �p

2, or 2 +
p
3.

4 Conclusion

In the contribution we have explained how the

requirement of the presence of a self-similarity

factor for a model set � limits the cut and project

scheme in which � is constructed. For such scheme,

the de�nition may be formulated in a nice alge-

braic way, see (3). Model sets given by (3) have

a rich structure of self-similarities, described in

the terms of a semi-group. The presence of a

self-similarity factor of a model set � may allow

one to generate � using substitution rules [8].

We have established the relation between model

sets and �-convex sets. Any model set with con-

vex acceptance window is �-convex for in�nitely

many factors �, but up to three exceptional cases,

given such �, there are �-convex sets, which can-

not be identi�ed with any model set. This con-

clusion mativates one for further study of the

structure and properties of �-convex sets.
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