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Abstract:-  Generating models of real objects is one of the central goals in computer vision. The aim of this
paper is to present a method for deriving precise models of three-dimensional objects. The proposed approach
efficiently combines techniques and algorithms used in several scientific fields closely related to computer
vision. Stereo vision an d photogrammetry are used in order to obtain accurate three-dimensional measurements.
Methods of computational geometry based o n Delauna y triangulations are used in order to generate a three
dimensional model of the object. Pattern matching and segmentation techniques are used in order to evaluate the
model and segment it. Path planning techniques are used for guiding the tool around the object in order to get all
the necessary measurements to refine the model.

The outline of the proposed methodology is the following. Initially we calibrate the system. Then we
use a robot arm to scan the object with a laser beam and obtain range data. Next we examine the surface of the
object and identify areas where the object has not been sampled properly. Based on these results a new
scanning strategy is derived. The new scanning operation reveals new information on non-accurately sampled
areas. The resulting solid models are merged providing a more accurate model. The above process is repeated
until the desired quality based on the structure of the object is reached.

Our approach is applied in cases where the structure of the object is known and simple, but also when
the structure is complex. The proposed methodology has the following main characteristics: a) it adapts to
object morphology, b) refines the initial estimation and c) provides a complete sequence of operations for
deriving a three dimensional model.
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1   Introduction
One of the central goals in computer vision

is to generate models of real world objects. Several
methods have been developed for deriving depth and
shape of objects. These methods include stereo
vision, shape from shading and techniques
estimating motion and shape simultaneously. When
it is required to precisely reconstruct an object,
accurate range data are necessary. Methods, which
sample the surface of the object and obtain range
data, include laser triangulation, radar measurements,
lens focus and interferometry. The sampled set of
points on the surface of the object form the initial
data, which are then processed by object
reconstruction algorithms. In general methods for
object reconstruction use (a) surface representations
with polygonal meshes, or piecewise smooth surface
approximations, and (b) volumetric object
descriptions like 3D Delaunay triangulations and
implicit solid modeling [3,5, 16].

2   Problem Formulation
Accurate object reconstruction has to

overcome many difficulties depending on the
structure of the object, its surface properties, its
position-orientation and lighting conditions. The
procedure has to handle noisy data, occlusions,
accessibility problems and finally provide accurate
results. Nevertheless, in several computer vision
problems fusing sensor information and algorithms
has given more accurate results compared to single
approaches. For example, several ambiguities and ill-
posed situations existing in a two-camera system are
almost eliminated in a multicamera stereo system.
Similarl y, object recognition from image sequences
provides better results compared to a single image
approach[15]. Moreover addressing motion and
structure estimation simultaneously and working on
stereo image sequences provides better results in
both estimation problems[9]. The framework of our
approach is based on the above principle.

Our goal is to automatically scan an object
and derive a precise model of it. Therefore we



efficiently combine techniques and algorithms used
in several scientific fields. Stereo vision and
photogrammetry are used in order to obtain accurate
three-dimensional measurements of the working
area. Methods of computational geometry based on
Delaunay triangulations are used in order to generate
a three dimensional model of the object. Pattern
matching and segmentation techniques are used in
order to evaluate the model and segment it. Path
planning techniques are used in order to guide the
tool around the object in order to get all the
necessary measurements to refine the model.

3  Problem Solution
The outline of the proposed methodology is

the following. Initially we calibrate the system. Then
we use a robot arm to scan the object with a laser
beam and obtain range data. Next we examine the
surface of the object and identify areas where the
object has not been sampled properly. Based on
these results a new scanning strategy is derived. The
new scanning operation reveals new information on
non-accurately sampled areas. The resulting solid
models are merged providing a more accurate one.
The above process is repeated until a desired quality
level is reached. The following sections present the
basic steps of our approach.

3.1   System Calibration
Depth perception can be derived by

processing multiple images taken from different
viewports. In order to extract depth it is necessary to
know the relative position of the cameras, model the
camera system and compensate any errors and
distortions. The above problem is solved using
camera calibration techniques [1].

The algorithm used estimates (a) the
extrinsic parameters of each camera, describing its
position and orientation, and (b) the intrinsic
parameters describing its internal viewing
characteristics. Calibration is based on viewing
points on a calibration cube whose 3D coordinates
are known with great accuracy. Although, it is
possible to calibrate the camera using self-calibration
methods, a special calibration pattern is necessary in
order to achieve high accuracy. The perspective
transformation matrix coefficients are computed
solving the system of equations formulated by the
image coordinates ),( 21 iii xxp = of world points

),,( 321 iiii XXXP =  [7,8]. Since, the real image is

quite different from the image derived by the pin
hole camera model, we add non-linear terms to the

perspective projection of a point in order to model
distortions. The most important effect and is caused
(a) by the radial distortion, which is modeled as:
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and (b) the decentering of the lens, which is modeled

as:  
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Based on the calibration setup accurate estimation
was achieved by modeling and compensating radial
and decentering of the lens distortions using an
iterative procedure[14].

 3.2   Three Dimensional Range Data
The next step is to take 3D measurements of

the object.  Stereoscopic analysis has sometimes

Fig.2 Distortion Compensation



given poor results depending on the light conditions
and workpiece texture.  We were able to overcome
these problems by scanning the object with a laser
beam [13].

In the first scanning procedure, the scene is
uniformly sampled using vertical laser beams. The
robot arm, moves a laser beam along a regular grid
in order to trace the object. Surface points on the
object are detected with accuracy by taking into
account the luminance gradient of the laser trace.
The accuracy is much better than the size of the laser
trace and the camera pixel.

In order to speed up the matching operation
we used rectification [12]. Rectification is a
transformation of the images based on epipolar
geometry, which enabled us to search for a match on
the light stripe only in one dimension a not in two as
it is generally required. This procedure transforms
the image coordinates of each image plane so that
pairs of conjugate epipolar lines become collinear
and parallel to one of the image axis. Given the
projection transformation matrix Pn, which rectifies
the view, the linear transformation that maps the a
point mo of the actual projection view Po into the
point mn of the rectified focal plane is of the form:

 m P Pm o
-1
onn =

Next, using inverse perspective on the
calibrated cameras the image coordinates of the
center of the laser trace are projected in the 3D world
along the line of sight. The lines of sight from the
different cameras, which see the trace, are
intersected and the intersection coordinates gives the
coordinates of an object point. However, due to noise
and physical constraints, lines do not intersect in the
geometrical sense so we compute the point, which is
at minimum distance from the lines of sight.

As an alternative approach we used a laser
scanner attached to a robotic arm. The sensor
computes the coordinates of the traces based on the

principle of triangulation. Then the coordinates given
by the sensor are transformed to world coordinates
by combining the transformation matrices between
all the coordinate systems of the links of the system.
Time stamps are used for synchronizing the
measurements of the sensor with the robot position.

3.3   Model Reconstruction
The sampled set of points of the surface of

the object forms the initial range data, which will be
used to approximate the surface of the object.
Reconstruction algorithms use triangular mesh
representations or piecewise smooth functions for
approximating the surface of the object [5]. Research
is also focused in directly reconstructing the volume
instead of the surface of the object [16]. Regarding

function representation the problem of object
reconstruction has two major approaches. The first
deals with functions of the form z=f(x,y)
representing range data and the second works with
cloud points sets and implicit functions of the form
f(x,y,z)=c [11]. In our approach each view consists
of a set of consecutive measurements that form a
function of two variables.

The range data go through the following
processing steps: (a) their coordinates are
transformed to the robot tool coordinate system, (b)
Delaunay triangulation is performed on the (x, y)
plane in order to assure mesh connectivity, (c)
filtering is performed to remove outliers and smooth
the surface, (d) the surface is processed and
segmented into regions according to the quality
measure of the range data. The results of this
procedure are (a) regions of the surface that require
additional scanning and (b) a solid model of the
object as seen from this view point.

The first step is required in order to process
the range data as a function of the form z=f(x,y). The
range data of each view are taken using a constant
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orientation in the tool. Only the position of the tool
changes, so we tranform each point to the coordinate
system that the tool had in the beginning of the
scanning procedure.

The next step is to perform Delaunay
triangulation on the XY plane. Delaunay
triangulation connects each point of set points to its
natural neighbors and is the dual of the Voromoi
diagram. The circle circumscribed about a Delaunay
triangle has its center at the vertex of a Voronoi
polygon. Using Delaunay triangulation we achieve
mesh connectivity and avoid mesh intersection.
Further more we are able to interpolate the surface
using higher order functions to accurately describe
curved areas.

Range data requires filtering. Filtering has to
achieve the following: remove outliers, smooth the
surface and preserve information. A neural network
is used in order to filter out noise. The parametric
function represented by a network with one hidden
layer has the form )(ˆ cbyaxsz ++=  where s( )
is a non-linear activation function. Networks with
more than one hidden layer can model complex
surfaces using a variety of basis functions. The
training algorithm is based on Back Propagation
algorithm modified so that it can handle errors in the
training data set [6]. Instead of minimizing the sum
of squared errors, it minimizes a new function, which
is adjusted with the progressively refined knowledge
of noise in the data. The algorithm minimizes
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When minor noise exists in the training data, the
algorithm is similar to back propagation algorithm.
However, when noise level increases the influence of
noise on the learning process is significantly
reduced, because the amount of weight adjustment at
the output layer during leaning is proportional to

)(rtψ instead of the residual r.  We need then to

specify q, which is the percentage of bad data to be
tolerated by the algorithm.  Using the bootstrap
method the confidence interval of the residuals is
computed that separates the good from the bad data.
 Then we have to identify areas where the
scanning procedure should be repeated. For this
reason we define a measure of quality of the
sampling procedure according to which the surface is
segmented. In particular, because the object is three

dimensional and not an explicit function z=f(x,y)
different criteria can be used for the range data
quality. For example on areas that are occluded, the
scanning process provides measurements, which
form a region created by the extrusion of a curve.
This region has data points only on its boundary.
Another example is that areas of the object, which
are aligned with the direction of the beam, provide
very few measurements.

From the above we concluded on two
criteria, regarding the quality of the range data. The

first one is the sampling density over the surface of
the object. This is measured locally as the inverse of
the area of the surface of the mesh triangles. The
normal to the mesh triangles approximates the
surface normal and is used in defining similar
regions using region growing techniques. The second
criterion is that areas where there is a significant
change in the normal of the surface imply high
curvature and therefore require more samples. The
output of the segmentation process is areas where
additional scanning is required and a principal
scanning direction, which has the tool to follow for
each region.

3.4   Path planning
The scanning procedure is handled by the

robot arm, which must be programmed to move the
laser beam along the area encircling the object. In the
first stage the robot arm samples the object of the
scene following a regular grid. The density of the
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grid is twice the sampling density we finally require
on the surface of the object. The sampling frequency
along the object surface depends on the orientation
of the surface relative to the laser beam. Therefore,
this procedure is not complete, because several areas
of the object can be occluded or seen from a small
angle. Therefore we need to derive additional
scanning paths for the not accurate regions derived
during the segmentation of the model. The normal to
the surface of these regions is considered the
appropriate orientation for the scanning tool. Based
on these vectors we determine the new scanning
orientation and positions. Then we examine whether
these scanning orientations intersect with the object
model already created and in this way assure that the

region will be visible. Additionally we examine for
collisions between the object and the tool of the
robot arm [4]. In case the simulation system sees a
collision a heuristic search is performed modifying
the orientation of the tool. In case it is not possible to
completely cover the area we accept the one with the
best foreseen quality Q, which equals the sum of the

dot products of the scanning orientation s with the
normal of the surface n over the covered area.

Since the new scanning procedure will
reveal new information on the area of the not
accurately sampled region we do not need to cover
the whole of the area in one step. The missing
information will be covered in the next iteration if
necessary.

3.5   Merging of three dimensional views
For each view of the scene a different solid

model is created. The principle of the merging
operation is to intersect the three dimensional models
from each view and create the final model which is
the common part of all views [13]. However due to
errors in the mechanical joints of the robot arm, each
model created by the laser scanner requires a small
alignment. For this reason the scanner scans also
three reference marks aside the object in order to
exactly define its orientation and position and
compensate for the above errors of misalignment.

Then the models from the different scanning
orientations are aligned and intersected. Views are
intersected inside the common bounding volume of
each view. This happens because in some steps we
do not scan the whole area encircling the object but
only the part that is not clear. In general after the
intersection of the solid models we perform
smoothing operations, as described above, on the
surface of the object in order to derive the final
model.

3.6   Experiments
Experiments have been conducted on small

and large objects. Large objects were scanned using
only the fixed camera system, because the set up of
the camera system can be adjusted according to the
size of the objects and can be applied to small and
large objects. The images were acquired from four
CCD cameras. The range of the laser scanner is
around 50 centimeters and small objects were
scanned with more detail using the laser scanner. In
order to scan objects at different angles, the tool of
the robotic system, moved the laser in all required
directions. The final accuracy of the laser scanner is
considerably affected by the accuracy of the robot
arm. These errors did not exist in the camera system,
because is does not require measurements on moving
parts. However, it requires accurate calibration. The
calibration device is a cube with a chessboard pattern
on each side. The image features were detected with
1/10th of a pixel accuracy. The calibration cube was
placed around one meter away from each camera in
order to model distortion parameters accurately
along the field of view. When scanning large objects
the calibration cube was used to calibrate the
intrinsic parameters of the camera first. The extrinsic
parameters were calibrated using eight reference
marks on the area of the scanning operation.

Experimental results show that we overcame
problems found in stereoscopy and laser scanning.
The algorithms performed well under poor lightning
conditions on matte objects and on shiny ones too,
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erroneous points were filtered out and the object was
reconstructed accurately. The accuracy of the system
was verified by taking external point measurements.
The measurements were accurate to 1mm in the
range of a 500 mm object and a 2-3mm for large
objects of a few meters.

4   Conclusions
Several fields related to robotic vision are

integrated efficiently and form a complete system,
which provides accurate results. This is achieved by
fusing sensor data and by super sampling.
Furthermore defects and distortions are compensated
by software calibration and noise is filtered out
adequately by the neural network. The algorithm
adapts well to the structure of the objects of the
scene and guides the robot arm efficiently. Although
large bandwidth is required to handle and process the
images the operation can be speed up significantly
using appropriate hardware. Finally, we consider the
procedure reliable enough so that it can be fully
automated in the future.

References:
[1] R. Y. Tsai, “A versatile Camera Calibration

Technique for High-Accuracy 3D Machine
Vision Metrology Using Off-the-Shelf TV
Cameras and Lenses”, IEEE Journal of Robotics
and Automation, Vol. RA-3, No. 4, 1987, pp.
323-344.

[2] F. Ferrie, , J. Lagarde, and P. Whaite, “Recovery
of volumetric object descriptions from laser
rangefinder images”, In Proc. of Computer
Vision -- ECCV '90, 1990, pp. 387-396.

[3] J. Doi, and K. Koeda, “Three-dimensional
reconstruction of solid models from multi-
directional images and applications to industrial
measuration”, In Proc. of SPIE, Close-Range

Photogrammetry Meets Machine Vision, 1990,
pp. 564--571.

[4] L.P.Gewali, S. Ntafos and I.G.Tollis, 1990.
“Path Planning in the Presence of Vertical
Obstacles”. IEEE, Robotics and Automation, Vol
6, No 3, pp.331-341.

[5] D.Terzopoulos and M Vasilescu, “ Sampling and
Reconstruction with adaptive Meshes”, In
CVPR’91 IEEE Computer Vision and Pattern
Recognition 1991, pp 70- 75.

[6] D. Chen, R. Jain and B. Schunk, “Surface
Reconstruction Using Neural Networks”, In
CVPR’92  IEEE Computer Vision and Pattern
Recognition 1992, pp 815-817.

[7] O. Faugeras, “Three-Dimensional Computer
Vision: A Geometric Viewpoint”, The MIT
Press, Cambridge, 1993.

[8] M. R. Shortis, T. A. Clarke, and T. Short,  "A
comparison of some techniques for the subpixel
location of discrete target images", In SPIE Vol.
2350 Videometrics III ,1994, pp. 239-250.

[9] A. Murat Tekalp, “Digital Video Processing”,
Prentice Hall, 1995.

[10] D. Geiger, B. Ladendorf, and A. Yuille,
“Occlusions and binocular stereo”, International
Journal of Computer Vision, April 1995, pp.211-
226,.

[11] C.Lim, G.Turkiyyah, M. Ganter, D. Storti,
“Implicit Reconstruction of Solids from Cloud
Point Sets”,  ACM Proc. of the 3rd symposium
on Solid modeling and applications,pp.393, 1995

[12] D. V. Papadimitriou and T. J. Dennis. “Epipolar
line estimation and rectification for stereo
images pairs”, IEEE Transactions on Image
Processing, April 1996, pp.672-676.

[13] Yang, Z.M., Wang, Y.F., “Error Analysis of 3D
Shape Construction from Structured Lighting”,
In PR(29), No. 2, 1996, pp. 189-206.

[14] J. Heikkila, O. Silven, “Calibration procedure
for short focal length off-the-shelf CCD
cameras”, Proc. of The 13th International
Conference on Pattern Recognition. (1996)
Vienna, Austria. pp. 166-170.

[15] A. Delopoulos and Y. Xirouhakis, “Robust
Estimation of Motion and Shape based on
Orthographic Projections of Rigid Objects”,
Tenth IMDSP Workshop 98, July 1998.

[16] L E.Mucke, “A Robust Implementation for
Three-Dimensional Delaunay Triangulations”,
International Journal of Computational
Geometry & Applications",vol.8, no2, pp.255-
276,1998

Fig.6 Object Model


