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1 Introduction
A great number of processes in science and engineering can
be modeled as a bilinear system.  Earlier publications
concern the analysis and structural properties of bilinear
systems [1].  Later, optimal control theory and quadratic
indices were used for the design of controllers for bilinear
systems (cf. [2] and included references).  The stability of
perfectly known bilinear models is studied in [1], [3], and
[4].

Various engineering systems involve time delays in the
state or the control variables.  These delays, which are often
ignored to make the theoretical analysis simpler, can be a
source of instability.  Much work has concentrated on the
analysis of linear systems with delays ([5], [6] and
references).  In contrast, the problem of analyzing bilinear
time-lag models has not been given comparable attention.
In a recent publication Lu and Wey [7] examine the
stability of a bilinear system with delay in the state, and
derive a sufficient condition  using the Lyapunov direct
method.  The Lu-Wey approach assumes that the system
model is exactly known; however, the  mathematical
modeling of physical systems always involves uncertainties
associated with the nominal model.  The treatment of
uncertain bilinear systems with time delays and their
stability properties appears to be absent from the literature.

In this paper a state-feedback controller approach is
employed to stabilize a continuous-time uncertain bilinear
system with delay in the state variables.

2 Notation
The matrix measure is a function µ: ℜ nxn → ℜ

µ(A) = lim
ε→ 0+

I + εA − 1

ε
where ⋅  is an induced matrix-norm on ℜnxn .  For the

usual 1, 2, and infinity induced norms the matrix measure is
given by the following simple formulas:

µ1(A ) = max
j

(ajj + | aij |
i ≠ j∑ )

                       µ2(A) = λmax(
A* + A

2
)

µ∞ (A) = max
i

(aii + | aij |
j≠ i∑ )

where A*  is the Hermitian of matrix A, and λmax

represents the maximum eigenvalue.

2 Problem Formulation
Consider the uncertain MIMO bilinear system with time-
delay in the state represented by the equations

  ˙ x (t )= A1x (t) + A2x (t − τ) + Bu(t)

             + [Nix (t)
i=1

m∑ ui (t) + g1(x (t),t) + g2 (x( t − τ ), t)] (1)

x(θ) = ϕ(θ) , θ ∈[−τ , 0 ]  (2)

where x(t) ∈ℜn  is the state vector with initial state
x(0) = x0 ; u(t) ∈ℜm  is the input vector; Ai , B, and Ni ,
are constant matrices of appropriate dimensions; ϕ( t)  is a
continuous vector-valued initial function; and τ > 0 is the
time delay.  The vector functions g1(x (t), t) ∈ℜn  and

g2(x (t − τ), t )∈ℜn  represent nonlinear modeling
perturbations that depend on the current state x(t) and the
delayed state x(t −τ )  of the system, respectively.  It is
assumed that the modeling uncertainties satisfy the bounds

g1(x( t), t) ≤ γ1 x (t) (3)

and

g2(x (t − τ ), t) ≤ γ2 x (t −τ ) (4)

where γ1  and γ 2  are known positive real constants, and the
operator ⋅  may be any vector norm.  Note that in the case

where the nonlinear uncertainty g1(x (t), t) = 0 , it is
accepted that γ1 = 0  and likewise for the case in which
g2(x (t − τ), t )= 0  where γ 2 = 0 .  It is also assumed that



the following inequality is satisfied for all θ ∈ [−τ , 0 ] and
for all real q > 0 :

x (t +θ) ≤ q x (t ) (5)

Similar assumptions have been used in the context of
Razumikhin-type theorems where Lyapunov functionals are
employed for stability analysis.  For an extensive
discussion see [8, pg. 127].

Using a state feedback control law
u(t) = Fx(t) (6)

where F is a constant matrix, the objective is to find
sufficient conditions that F must satisfy in order to
asymptotically stabilize the bilinear system (1)-(2) for any
modeling uncertainties that satisfy the norm bounds (3)-(4).

Theorem.  Suppose that the bilinear system (1)-(2)
satisfies the uncertainty bounds (3)-(4) and inequality (5).
Then (6) is a robustly stabilizing state feedback control if

µ(A1 + BF) + q A2 + γ1 + qγ 2 < 0 (7)

and the initial state lies in the domain of attraction defined
by the inequality

x0 < −
µ(A1 + BF ) + q A2 + γ1 + qγ 2

Nii =1

m∑ F
(8)

Proof.  Let a component of the input vector (6) be
ui ( t) = fi

T x (t )  where fi
T  is the i-th row of matrix F.

From (1) the closed-loop system is written as

     ˙ x (t )= A 1x (t) + A2x (t − τ ) + Nix( t) fi
Tx( t)

i =1

m∑
                        + g1 (x (t ), t ) + g2 (x( t − τ ), t ) (9)

where A = A1+ BF .  The solution to (9) for t ≥ 0, is
readily expressed as the integral equation

x(t ) = e A tx0 + eA (t − s)[A2 x(s −τ)
0

t

∫ + Ni x(s) fi
T x(s)

i =1

m∑
           + g1 (x (s), s)+ g2 (x(s −τ ),s)]ds (10)
Taking the norm of both sides in (10), using the inequality
[9]

e At ≤ eµ(A) t , t ≥ 0 (11)

and invoking the bounding inequalities (3)-(5) yields

x (t) ≤ eµ(A )t x0 + eµ(A )(t − s)
0

t

∫ (q A2 + γ1 + qγ 2 ) x(s ) ds

             + eµ (A )(t − s)
0

t

∫ N i F x(s)
2

i =1

m∑ ds (12)

Now consider the scalar differential equation
˙ z (t ) = [µ (A ) + q A2 + γ1 + qγ 2 ]z (t) + Nii =1

m∑ F z(t)2(13)

with initial condition z(0) = x0 .  The solution to (13) is

unique and is given by the integral expression

z(t) = eµ( A )t z(0) + eµ( A )(t − s)
0

t

∫ (q A2 + γ1 +qγ 2 )z(s)ds

             + eµ (A )(t − s)
0

t

∫ N ii =1

m∑ F z(s)2ds (14)

From inequality (12) and invoking the Comparison
Theorem [8], it follows that

x (t) ≤ z(t ), for t ≥ 0 (15)

therefore, asymptotic stability for (13) (i.e., z(t) → 0  as
t → ∞) implies asymptotic stability for x(t ).  From the
Poincaré-Lyapunov theorem (cf. [9]) it follows that (13) is

asymptotically stable if µ(A ) + q A2 + γ1 + qγ 2 < 0  and if

z(0) = z0  is sufficiently small.  A characterization of the
smallness of  z0  can be obtained by examining the
asymptotic behavior of z(t)  as a function of z0 .  First, the
equilibrium points of (13) are found by setting the
derivative of z(t)  equal to zero to obtain z1 = 0 and

z2 = −
µ (A ) + q A2 + γ1 + qγ 2

N ii =1

m∑ F
(16)

It follows that when µ(A ) + q A2 + γ1 + qγ 2 < 0 , then

z(t) → 0  for all z0 < z2 , and that z(t) → ∞ in finite time
for all z0 > z2 .  Using the fact that z0 = x0  and
recognizing (15), it immediately follows that when the
inequality condition (7) is satisfied then x(t ) → 0  as
t → ∞ provided that the initial state in turn satisfies
condition (8) of the Theorem as specified by (16). Q.E.D.

As can easily be verified, the bounds obtained using
the sufficient conditions (7) and (8) vary with the chosen
norm and the corresponding matrix measure [9].  It is then
possible that for a given norm and matrix measure one can
conclude stability, while with other matrix norms the
stability condition may not hold.  In this respect, the
problem of choosing a suitable norm and matrix measure to
tighten the stability condition is similar to the  problem of
finding an appropriate Lyapunov function candidate in the
well-known and widely used Lyapunov techniques for
determining the stability of control systems.

Besides the well-known 1, 2, and infinity norms, other
induced norms and matrix measures involving weighting
parameters may be utilized in the stability conditions.  As
an example consider the following weighted matrix norm
and corresponding matrix measure:

A w = max
i

w j

wi
aij ,

j
∑

µw (A) = max
i

{aii +
w j

wi
aij }

j ≠i
∑

3 Example
Consider an uncertain bilinear system defined as in (1) with
dynamics described by

A1 =
0.1 −0.2
0.8 −2.1

 
  

 
  , A2 =

0.1 0
0 0.1

 
  

 
  

B =
1.1
0.2

 
  

 
  , N =

0 −0.2
0.1 0

 
  

 
  

and the nonlinear uncertainty bounds γ1 = 0.3 .  For
simplicity, let g2 (x (t − τ), t )= 0 , which is equivalent to
setting γ 2 = 0 .  Notice that the open-loop system is
unstable since matrix A has one positive eigenvalue.

By a standard pole-placement technique, we take the
eigenvalues of A = A1 + BF  to be -2.09 ± 0.4i, and then
find the feedback matrix F = [2.95 0.25].  Using
condition (7), we obtain results for the usual 1, 2 and
infinity norms. For the 1-norm,



µ1 (A )+ q A2 + 1
3 B F + γ1 = 0.15

which is greater than zero; therefore nothing can be
concluded for the stability of the system.

For the 2-norm,

µ2 ( A )+ q A2 + 1
3 B F + γ1 = −0.54

with a corresponding region of attraction given by
x0 ≤ 0.91 while for the ∞-norm,

µ∞ (A )+ q A2 + 1
3 B F + γ1 = −0.18

with x0 ≤ 0.30 .  Hence, it follows from the Theorem that

the delayed bilinear system is asymptotically stable when
the initial state belongs to a region of attraction defined by
x0 ≤ 0.91.  In fact, if there is no uncertainty (i.e.,

γ1 = γ 2 = 0 ), then application of the Theorem to the pole-
placement design leads to the stability condition

µ2 ( A )+ q A2 + 1
3 B F + γ1 = −0.84

Hence, the system is stable.  Furthermore, the region of
attraction in this case is given by x0 ≤ 1.41.  Clearly, the

system without uncertainty enjoys a larger region of
attraction, as expected.

Note that Longchamp [4] claims that for the particular
example, the region of attraction x0 ≤ 0.255 is considered

adequate for practical applications; hence, the region of
attraction x0 ≤ 0.91 found by the approach proposed here

could also be deemed appropriate.

4 Conclusions
This paper establishes sufficient conditions for the robust
stabilization of uncertain bilinear systems with delay in the
state variables.  The results presented are applicable to
continuous time models that include delayed states as well
as general nonlinear uncertainty descriptions.  The derived
conditions are given in terms of succinct scalar inequalities.
A characterization of the region of attraction is also given,
and an example illustrates the results.  The derived results
are believed to be extendable to the case of constrained
control and the latest findings will be reported at the
conference.  Research currently focuses on deriving
conditions for the case where the states are not available
and must be estimated via an appropriate extended Kalman
filter.

Acknowledgements
The authors gratefully acknowledge support received from
the National Science Foundation under grant number CTS
9502936.

References:
[1] Mohler, R. R., Nonlinear Systems, vol. 2 Bilinear
Systems, Prentice Hall, Englewood Cliffs, NJ, 1991.
[2] Benallou, A., D. A. Mellichamp, and D. E. Seborg,
"Optimal stabilizing controllers for bilinear systems",

International Journal of Control, Vol.48, 1988, pp. 1487-
1499.
[3] Genesio, R. and A. Tesi, "Feedback of SISO bilinear
systems", International Journal of Control, Vol.48, 1988,
pp. 1319-1326.
[4] Longchamp, R., "Stable feedback control of bilinear
systems", IEEE Transactions on Automatic Control,
Vol.25, 1980, pp. 37-45.
[5] Choi, H. H., "Riccati equation approach to the
memoryless stabilization of uncertain dynamic systems
with delayed control", Electronic Letters, Vol.30, 1994, pp.
1100-1101.
[6] Chen, J. and H. Latchman, "Asymptotic stability
independent of delays: Simple necessary and sufficient
conditions", American Control Conference, Baltimore, MD,
1994, pp. 1027-1031.
[7] Lu, H. C. and C. A. Wey, "Lyapunov stability of
bilinear time-delay systems", Conference on Decision and
Control, San Antonio, TX, 1993, pp. 3841-3842.
[8] Hale, J., Theory of functional differential equations,
2nd ed., Springer-Verlag, New York, NY, 1977.
[9] Vidyasagar, M., Nonlinear Systems Analysis, 2nd ed.,
Prentice Hall, Englewood Cliffs, NJ, 1993.


