
SDL Specification and Verification of Connection Establishment
and Release Protocol

S.KAMPIRELLIS, S.TRIANTAFYLLOU and A.ANDREATOS
Engineering Dept.

Hellenic Air Force Academy
Dekeleia Air Force Base

Attica, TGA-1010
GREECE

Abstract: - In this paper a connection establishment and release mechanism of a full duplex communication
protocol is specified. The specification is written in SDL graphical [GR] representation. The protocol phases
described here are destined for unreliable and noisy channels. In order to cope with such an environment, the
following measures are taken:
1. Connection establishment is done using double handshaking for increased reliability and medium testing

purposes.

2. Connection release may also be initiated by a physical layer interrupt such as synchronisation loss or node
failure; this suits perfectly to wireless channels.

This work is an improvement over previous related specifications of connection establishment and release
protocols.

Key-Words: - SDL, FDT, specification, verification, protocol, connection, establishment, release,
handshaking, unreliable, wireless, noisy channel, physical medium. CSCC'99 Proceedings, Pages:5421-5425

1 Introduction

1.1 Formal description techniques
Formal Description Techniques (FDTs) are

languages and methods used for mathematical
description of (software and/or hardware) system
development, which ensure mathematical precision
and tractability. Conventional descriptions of
systems are usually given in natural language or
diagrammatic forms; such descriptions are not
always clear or unambiguous, frequently contain
errors and/or omissions, and are often hard to
analyse. FDTs are used for the development and
verification of systems which are [1]: complex,
concurrent, safety-critical, quality critical, security
critical and standardised (to ensure global
compatibility and unique interpretation). Thus,
FDTs were developed to ensure: 1) unambiguous,
clear and concise specifications; 2) completeness
of specifications; 3) consistency of specifications;
4) tractability of specifications; and 5)
conformance of implementations to specifications
[1].

1.2 Brief history of SDL
One of the areas where FDTs have been

actively used is (tele)communications [1]. ITU-T

(ex CCITT) is strongly interested in FDTs; it has
expressed its interest so early that it standardised
an early version of Specification and Description
Language (SDL) in 1976. SDL is a formal
language for the specification of interactive
distributed systems. It provides two types of
notation: graphical (GR) and textual (TX) [2].
Although SDL was initially intended to protocol
specification of telecommunications applications,
its use is now being extended to other areas.
Through successive four-year study periods, SDL
has evolved from an informal diagrammatic
notation to a fully-fledged FDT and has superseded
its competitors, ESTELLE and LOTOS.

SDL is based on an extended finite state
machine model, supplemented by features for
specifying Abstract Data Types (ADTs), this
combination being supported by a complete formal
semantics. SDL provides constructs for
representing structures, behaviours, interfaces and
communication links. In addition, it provides
constructs for abstraction, module encapsulation
and refinement. An SDL-described system is
composed of blocks interconnected to each other
and to the environment by means of
“channels”[1,2]. All these constructs support the
representation of a variety of telecom system
specifications, including services and protocols.

SDL is broadly used by the telecom community
and is well supported by a variety of tools, many of
which are commercially available.

1.3 Link Control Protocols
In this paper we investigate the connection

establishment and release protocol phases because
of their practical use in many real-world
applications. Two fundamental versions of the
specific protocol exist: a) single handshaking and
b) double handshaking [3]. An SDL specification
of the single handshaking protocol can be found in
[1]. This paper is therefore organised as follows:
section 2 gives a generic description of the
protocol; section 3 is an informal specification of
the protocol; section 4 contains the SDL protocol
formal description and finally, section 5 presents
results obtained and draws some conclusions.

2 Generic Description of the Link
Control Protocol

A description of the generic properties and
the services provided by the data link layer to its
users above, is the first and one of the most
important steps towards its formal specification. In
most reference models, such as ISO/OSI and
TCP/IP, the Data Link Layer is the interface
between the Physical Layer and the Network
Layer. While the former handles the transaction of
raw bits, the latter routes the packets of data within
the subnet borders. In order for the network layer
to provide its services, the data link layer has to
deal with the problems posed by an unreliable
physical medium. These difficulties range from
the relatively high Signal-to-Noise ratio and the
negligible bit error rate found in fiber optics, to the
low Signal-to-Noise ratio and frequent loss of
signal during the handoffs found in wireless media
(e.g. cellular telephones). Due to the varying
difficulties and impairments posed by the
transmission medium, many different protocols
have been developed during the past decade,
depending on the user needs.

To deal with the situation described above,
an appropriate protocol should be developed. This
protocol should assist the task of establishing and
releasing a logical link between two
communicating parties (nodes of a network). With
such a link established and properly working, the
network layer is able to provide the service
primitives Send Packet and Receive Packet to the
layer above. These are the default service
primitives provided and are independent of the
type of service provided by the Network layer.
More specifically, regardless whether the latter

provides a connection-oriented or connectionless
service, the connection establishment is the
procedure activated at communication startup.
When the data exchange (two-way
communication) has finished, the disconnection
phase is initiated, which releases the channel
allocated to the data transfer.

3 Informal Description of the
Connection Establishment and
Release Protocol

A link is the only way for two commu-
nicating nodes to exchange messages. Since the
nodes will be described using the finite-state-
machine concept, they should be in the appropriate
state for a message transaction in the form of
frames (cells in ATM). It is assumed that the nodes
start from an initial state, inadequate to exchange
messages. In order for them to reach a state where
this form of transaction is possible, a special
procedure of exchanging messages has to be
followed. This procedure is well known as
handshaking. It consists of some sort of questions
posed by the initiator (the node wishing to connect)
and the same sort of answers sent by the responder
back to the opposite side. The duration of this
procedure and its size (measured in messages) are
protocol dependent.

According to the protocol, the handshaking
can be single or double. In the first case, the
initiator simply sends a frame to the responder
informing it about the connection that is to come.
The responder then either accepts the request by
acknowledging the frame sent, or rejects it by
sending a frame back at the initiator informing it of
its intentions, or does not answer at all. If the
initiator desires a connection strongly, it will try
again later, when its timer expires. In the second
case, the initiator notifies the responder through a
request. The latter may either accept it and send
back a positive answer, or reject it and deny the
connection. The opposite side has then two
choices: the first choice is to accept the response
and continue with the connection or disconnection
respectively; the second one is to deny the
response of the responder and to commence the
sequence again. The first alternative results to the
successful end of the connection phase (and the
beginning of the data exchange phase), or to the
beginning of the disconnection phase. The second
one repeats the actions described above.

After the designer has determined what kind
of handshaking it wishes to implement, a new
question arises: which node will be in control of
the whole procedure just described? It is this node

which will decide whether to initiate a connection
or a disconnection sequence. The developer here is
faced with two choices. The first one is to have one
control node and the second is to have both of
them control the procedure. The choice depends on
the system. If the system in inherently bi-
directional (as it is in this paper), the protocol is
characterised as balanced. The other choice is a
master-slave protocol.

Another important issue is the exact
sequence of the signals which has to be followed,
in order to consider the connection establishment
(or the disconnection) successful. Obviously, this
matter cannot be resolved with just a simple
reference (such as the one above) to the messages
which should be exchanged between the nodes.
The only solution is the use of a formal description
technique like SDL. This need is a lot easier to
understand if the characteristics of the transmission
medium are taken into account. More specifically,
the medium can lose or corrupt the frames in the
channel; in this case reordering is not considered as
it is in the data exchange phase, because the node
sends a signal only after it has received one. An
important detail is that the whole procedure is
measured by timers which set the time limits for a
frame to be accepted.

Figures 1 and 2 describe usual situations
during the connection establishment. Figure 1
shows the connection setup without any problems;
Figure 2 shows connection setup with frame loss.
It is obvious that these pictures cannot substitute
the SDL graphical notation in any way.

4 SDL Formal Description
Part of the SDL formal description is shown

below in Figures 3 to 5. The communication
system typically consists of two nodes A and B
wishing to communicate and a communication
channel (medium) as shown in Figure 3. The
transmitter (node A) and the receiver (node B) are
assumed to use a proper transfer protocol to cope
with the unreliable medium (such as the sliding
window protocol described in [4]). Therefore the
medium is described as a block named Medium
containing two processes (Fig. 4). The first process
is called MediManager and generates random
events which make the whole medium unreliable.
The second process is called MessageManager and
handles the messages according to the random
events generates by MediManager. As a result, the
Block Medium may transmit correctly, corrupt or
lose incoming messages. This can also model
random failures happening in lines or switches of a
network falling across the communication path.

Each of the nodes becomes aware of the events
above by appropriate signals.

Node A is shown in further detail in Figure
5; it basically consists of an entity called EntityA,
which is in fact a finite state machine, reacting to
the events described above. At system start-up the
machine is in a state inappropriate for data
exchange. Only by following specific procedures
(formally described in [4]), will the machine
become ready to communicate and report this
successful link establishment to the layer above.

5 Results and Conclusions
The following results and conclusions can

be drawn out of this work:
1. Before writing a formal description of a system,

it is worth to understand and formally describe
its infrastructure first.

2. When describing a system in SDL, its boundary
with the environment is completely up to the
designer. This matter usually depends on the
desired point of view. Furthermore, it is
important to clearly define system boundary. In
our case block Medium describes the part of the
whole system which handles (from the
transmitter to the receiver, top-down and vice-
versa) fragmentation of the frame to bits,
computation of the checksum (CRC), bit or
character stuffing (depending on the
implementation), medium access (TDMA,
CDMA, etc.), transmission via the medium,
reception, removal of the stuffed elements,
recomputation of the checksum and reassembly
of frames.

3. The type of errors a system may cause need to
be carefully stated. It is vital for the protocol
designer to know exactly what kinds of errors
may occur in a medium and how they can be
modelled [1]. In our case, a point-to-point link
may corrupt or lose messages, or experience
other failures.

4. The system described in this paper has the
ability to set up a connection in case the
medium is very unreliable and failures are
frequent, in contrast to the common
transmission media used (optical fibres, coaxial
cables). Therefore, it is ideal for fault-tolerant
military wireless communications, in an
extremely loaded environment.

5. The nature of the environment in which the
protocol is designed to operate posed many
restrictions and requirements during the design
phase. The complexity of the protocol was
dictated by the requirement to recover from
frequent failures (for more information see [4]).

References:
[1] Kenneth J. Turner, Editor, “Using formal

description techniques”, John Wiley & Sons,
1993.

[2] J. Ellsberger, D. Hogrefe and A. Sarma, “SDL:
Formal Object-Oriented Language for
Communicating Systems”, Prentice-Hall,
1997.

[3] Bertsekas & Gallager, “Data networks”, 2nd

ed., Prentice-Hall, 1992.

[4] S. Kampirellis, S. Triantafyllou & A.
Andreatos, “Specification and Verification of
a Sliding Window Protocol”, to be presented
in “Telekomunikace ’99” Conference, Brno,
CZ, Sept. 1999.

Figure 1 Figure 2
Connection establishment without problems Connection establishment with loss problem

Figure 3 – Two nodes A and B communicating through a channel

Node A Node B

Request

Response
Ack 1

Node A Node B

Request

Loss

Request

Response
Ack 1

Positive
Response

Node Node

Medi

Questio
n,
READY,

Question,
READY,
NOTREADY

Connec,
Disconn Connec,

Disconn

CONACKr CONACKreq

CONACKind
FAILUREind

CONACKind
FAILUREind

lSA rSA

ml

mr

SIGNAL
Question,READY,NOTREADY,
CONACKreq(context,context,Boolean),
CONACKind(context,context,Boolean),
Connec,FAILUREind,Disconnec;
synonym tws Integer=external;
synonym time Duration=external;
synonym time3 Duration=external;
syntype lowseqno=Integer
constants 0:tws-1
endsyntype lowseqno;
newtype context
literals null,con,discon;
endnewtype context;

System
ConDiscProto

1(1)

SAP

SAP

Figure 4 – Block “Medium” describes the channel

Figure 5 – Node A in detail

Block NodeA; 1(1)

EntityA
(1,1)

CONACKind,
FAILUREind

CONACKreq

Connec,
Disconnec

Question,
READY,
NOTREADY

lSA

m

l

l

MediManager
(1,1)

MessageManager
(1,1)

SIGNAL
 OK, LOSE,
 FAILURE,
 TRANSMIT,
 REORDER,
 FAILUREA,
 FAILUREB;

Block Medium;

CONACKind,
FAILUREind

CONACKreq

CONACKind,
FAILUREind

CONACKreq

Reverse Direct

LOSE,
FAILURE,
REORDER,
TRANSMIT,
FAILUREA,
FAILUREB

OK

1(1)

ml mr

