
1

0RGHOLQJ�D�0DQXIDFWXULQJ�6\VWHP�XVLQJ�2EMHFW�2ULHQWHG�DSSURDFK

V. CARCHIOLO, A. LONGHEU, M. MALGERI
Istituto di informatica e Telecomunicazioni

Università di Catania
V.le A. Doria, 6 – 95100 Catania

ITALY

$EVWUDFW: Current manufacturing systems have a very structured production flow, expecially when high complexity and precision
is required, such as in semiconductor devices manifacturing. On the other hand, rapid changes in production and in market
requirements may occur, hence great flexibility is also essential. So, a major challenge is the development of a logical model for
such systems, satisfying these needs and also balancing between high abstraction and “hard-wiring” to the real production
environment.
Here we propose such a model applying object oriented databases techniques, which are a powerful technique, well suited to
manufacturing system environment, thanks to hierarchies, versioning and evolution management. We first define objects
characteristics, presenting different hierarchies (aggregation and constitutional), then we consider core objects, process and
product, also introducing several classes of operations used to describe production flow.

.H\ZRUGV��'DWDEDVHV��0DQXIDFWXULQJ�V\VWHPV��,QIRUPDWLRQ�V\VWHPV�2EMHFW�RULHQWHG�SURJUDPPLQJ

�� ,QWURGXFWLRQ�
Modern industrial processes are highly structured and
automated, so when managing them it is necessary to have a
ORJLFDO� SURGXFWLRQ PRGHO� which may be quite complex,
depending on the number and type of requirements of the
product being manufactured. A classical example is the
integrated circuits (IC) area: due to both increasing
miniaturization and rapid obsolescence of devices, it is
required both a sophisticated and an open (flexible) model,
capable of rapidly adjusting production, also in reply to
market demand, in terms of both quantity of products and new
technologies and product development (Just in Time
production).
A generally accepted reference model for Computer
Integrated Manufacturing (CIM) systems models a factory as
a hierarchy of controls, with different responsibilities at each
level [1]. Inside CIM different activities can be located, from
CAE to CAQ (computer aided quality), to CAD, CAM and
CAPP (computer aided process planning) [2], in which
operations sequence for manufacturing tasks is established.
In this context, it is important to consider the connection
between the model and the available SURGXFWLRQ�HQYLURQPHQW,
i.e. both architecture and applications, since the model is
implemented using them (directly linked with machines
executing the sequence); this interaction has to fully exploit
architecture-applications pair features, but without being too
deep, as the model may be significantly influenced (hence,
limited) by the pair.
A solution is to implement the model with extremely general
pairs, assuring greater model expandibility; though efficiency
problems would arise due to the “distance” between the pair
and the model. Alternatively, pair can be completely
customized for the model; this assures high efficiency and
compatibility, but also mean limited expandibility and high
costs (e.g. software needs to be created ad-hoc), so a trade-off
between generality-expandibility and specificity-efficiency
has to be found when choosing the pair.
In addition, the model must be designed by DEVWUDFWLQJ� from
the pair, representing production process without constraints it

imposes; adopting an object-oriented approach assures this,
also remaining close to real system, generally hierarchical.
In this paper, we present a model for a manufacturing system
applying object-oriented approach. We use OO database
techniques to model several aspects of CIM, such as
aggregation and constitutional hierarchies, inheritance and
versioning. The model presented is a logical one, as opposed
to a real model which is an implementation of the former by
means of architecture-applications pair. This dichotomy may
significantly alter correct use of the model, i.e., coherence
problems arise; however, here we will not consider
implementation issues.
In section 2 we describe general object modeling and its
characteristics, while in section 3 we mention off-line and on-
line issues. In section 4 we introduce hierarchies, then in
section 5 we focus on process and product objects, then
considering their states in section 6 and finally presenting
conclusions in section 7.

�� 2EMHFW�0RGHOLQJ�DQG�&KDUDFWHULVWLFV�
The first step when creating a model is to identify REMHFWV,
each of which can be defined as an abstraction of a part of the
reality being considered. Being this definition highly general,
a generic object can represent any entity (e.g., human
resources), it may partially overlap with others (several
objects may have common features) and may or not have a
physical counterpart (this becomes more evident as model
description descends from a high abstraction level towards
real objects). An object can also be used to group others
together; this situation, which may also include classical OO
inheritance [3], determines aggregation hierarchy. Another
case is that of complex objects [4], i.e. consisting of other
objects; such links creates constitutional hierarchies (also
known as aggregation hierarchies [3][4]). Finally, several
objects can make up a single logical entity, leading to
composite objects [4] (constitutional hierarchies may also
include these objects). Aggregation, complex and composite
objects, all present in the CIM context, are essential to capture
production cycle features.

2

Identifying an object also means choosing which production
aspects must be considered as objects. Simple criteria are to
select the most significant entities, those that require an
identity of their own, and those that cannot be associated with
any other objects. Otherwise, entities can be simply modeled
as attribute of others objects.
Then objects have to be analyzed separately to establish their
features, properties (attributes), states and constraints
(determining criteria for changing in state and properties).
More specifically, considering an object’s DWWULEXWH means to
define its meaning (semantics), type and allowed values, as
well as any rules, i.e. conditions on existence (whether
attribute is optional or mandatory), on values (e.g. max length
in characters for text type) or involving other fields (e.g. “IF
ILHOG� exists AND ILHOG�=’x’ then ILHOG�= 70”) [11].
The last two rules may require more complex mechanisms
(e.g., conditions involving more attributes may need a
language to define and test rules).
We also note that some of object’s attributes are merely used
to support implementation (e.g. a “last access date” attribute);
we do not consider such attributes here.
Considering VWDWHV, we have mainly:
- creation, i.e. how an object is created (from scratch or by

copying, even from a different class with specific casting
rules), and what are inheritance constraints (from parent
object) and/or integrity constraints (when the object is
copied);

- updating, i.e. if and in what conditions it is possible, and
what this means for the object and all its descendants
(change propagation);

- deletion (feasibility, implications for descendants).
Some objects may also have other states, so each will have its
own appropriate finite state machine (FSM).
It should also be pointed out that if an object ; is complex or
composite, its state is determined both by its attributes and by
states of objects it contains or is associated with.
Finally, an object can have associated PHWKRGV��However, we
consider them as part of the object implementation, so here
they will not be taken into further consideration.

�� 2II�/LQH�YV�2Q�/LQH�,VVXHV�
Both in objects and their corresponding relations, there are
aspects that can be classified as static, regarding production
flow definition, and others dynamic, related to flow execution.
“Dynamic” property crosses through hierarchies, although it
becomes more evident at lower levels of abstraction, i.e. for
objects representing basic production units, since they
undergo real flow operations, leading to end product.
Dynamic nature does not depend on the modifications an
object undergoes, i.e. it is not more dynamic whether it
undergoes variations more frequently than others. An example
of an on-line aspect (lot sensitivity) is given in section 6.2.

�� +LHUDUFKLHV�
�����$JJUHJDWLRQ�KLHUDUFKLHV�
The root node is the highest level of abstraction required in
the model. It may, for instance, indicate the plant where
production takes place, or the head office, the various sites
being its descendants. In general, there can be any number of

both levels and nodes in a level. The model considered here,
however, concerns the production process, so the hierarchy
should represent just features strictly inherent: e.g. it will not
include nodes for economic description of the plant, or nodes
to model the hierarchy of personnel.
A possible elementary aggregation hierarchy is shown in
Fig.1. At the top level we have the IDFLOLW\ object, indicating
the plant where the production takes place.
To better understanding following objects, it is convenient
first of all to consider the SURGXFW, core of the production
process. This object represents the sequence of operations to
be given to real machines in order to make end products. This
final product is instead modeled by the leaf object in the tree.
Its parent, named ORW, groups a set of final products viewed as
a single production unit, e.g. for economic reasons (products
are sold in lots), or because of the type of product (a food
product could be a snack, and the packet would be the lot).
The father node for product is the SURFHVV, which groups all
products having the same sequence of operations, and higher
up still we have the SURFHVV�IDPLO\, a set of processes sharing
some feature. For example, if the model refers to IC
production, a family could contain all electrical devices with
“similar” manufacturing process (e.g. MOS or BJT) or, in
motor vehicle production, families could represent cars, vans,
and trucks.

The hierarchy we have presented may vary (as the grouping
criteria may change), there may be different number of levels
between the root and the leaves, and the root and leaves may
express a varying degree of abstraction (the root may coincide
with the product or with a group of production plants, or the
highest level of detail required may be just the lot); in the
following, we refer to Fig. 1.
As far as inheritance is concerned, it is only present in the
process-product case (see section 5.5), or at most with lot-end
product; with facility-process family, process family-process,
and product-lot, a weaker semantics is adopted, i.e. these are
considered simple logical aggregations (similar to association
present in [4]).
There are other inheritance mechanisms [5],[6], as well as
multiple inheritance [4], which will not be used here as we
wish to limit model complexity in favour of flexibility and
ease of management.

����&RQVWLWXWLRQDO�+LHUDUFKLHV�
A product consists of a sequence of RSHUDWLRQV. More
precisely, a product has a series of attributes, some of which
are simple (integer, string, or even array or set of basic types),
and others are expressed in terms of objects. One of these is
the sequence (2S6HT) attribute, which is composite in that it
consists of an ordered set of “operation” objects. A product is

Fig. 1

Lot 2-2-x-y

Process Family 2

FACILITY

���
Process 2-1 Process 2-2 Process 2-j���
Product 2-2-1 Product 2-2-x ���

Lot 2-2-x-1 ���

Process Family 1 Process Family i

Product 2-2-k

End product 2-2-x-y-1 ���

Lot 2-2-x-m

���

���
End product 2-2-x-y-n

3

thus a complex object defined in terms of composite objects.
In addition, at least one more level of detail may be generally
required, e.g. because the operation is too abstract, hence we
introduce (Fig.2) the sub-operation (6WHS) which is more
closely linked to the real machines and/or is more atomic;
therefore the operation is modeled as a sequence of steps
(6WHS6HT). In particularly complex production systems, we
may have more levels of detail.

Besides, an operation (or step), representing a physical action,
could appear in several OpSeqs (or StepSeqs), hence a
distinction must be made when using separate copies of the
same object (multiple instances) or not (single instance).
Having separate instances for an object X, means that they
have common features (inherited from the parent object), and
others specific to each instance. On the other hand, using a
single instance object implies the presence of a OLEUDU\�of such
objects, creating a “link” any time we need that object. So,
controls and behaviour required will change depending on the
relation needed (e.g. when deleting, see section 6.3).
These concepts are similar to the “composite reference”
introduced in [7], in which single instance coincides with the
VKDUHG case, and multiple with the H[FOXVLYH case. The same
paper also introduces the concept of dependence
independence which, combined with the previous property,
leads to four possibilities. In this context, single instance is
considered dependent, while deleting an instance of multiple
instances object does not involve the others.
Finally, operations and steps could be subclasses of a single
class; inheritance hierarchy is not generally related with
constitutional or aggregation hierarchies, rather it is
transversal.

�� 3URFHVV�DQG�3URGXFW�
In this paper we give a precise role to process object and to its
link with the product. When, indeed, several products only
differ in the values of certain parameters, or for some
operation of sequence, it is desirable to avoid the tedious and
error-prone work of re-creating what is common among them.
A process meets this need, since it is a general schema for
such similar products: creating it means to set all common
features for this group of products, so they will automatically
inherit all that has been defined inside their father process.
Then, to define completely each product, it will be required
just to specify some operations and/or missing parameters.
Hence, since creating a process implies inserting common
operations, it is important to identify all possible categories of
operations, in order to establish all that can be set inside a
process and what must be defined inside its products children.
Since a process (or product) sequence is somewhat similar to
a flow diagram, we located some RSHUDWLRQV� FODVVHV, each
having a corresponding block shape in flow diagram context.

����3URGXFWLRQ�2SHUDWLRQV�
The first class, named SURGXFWLRQ� RSHUDWLRQV, represents all

operations containing “instructions” (i.e., steps) about how to
work lots in order to make end products. This operation is
specified in several definition steps (levels).
First level is operation W\SH, which groups all operations with
some precisely defined steps, essential for that “type”.
To give a clearer idea, let us consider a mask operation, used
in chip production and consisting in creating device’s
geometry by means of partial photo-exposure of the silicon
(covered by a “mask”) and then removing unexposed material.
This operation can be assumed to consist of at least two fixed
steps, i.e. the photo-exposure (the mask will represent a
simple parameter) followed by a measurement to test it.
Up to this definition level, this operation can be represented as
in Fig. 3 a), where a certain number of possible steps (1...x,
unknown at this stage) appear before the masking step,
followed by the latter, in which the mask does not appear (so
it is a “missing parameter” in the previously defined sense,
and has to be specified separately for each product). There
then may be other steps, up to the measurement (whose
completion e.g. depends on the value of the parameter ()XQF��
PDVN�), and finally, another potential group of steps.
In the second phase the number and type of all the groups of
steps 1…x, 1…y and 1…z are chosen, together with the exact
form of)XQF, but all the parameters of the steps are not yet
specified (thus passing from Fig. 3 a) to Fig. 3 b)). This level
is called WHPSODWH, since it completely defines the structure of
each operation. Finally, it is possible to set any remaining
parameter and calculate any related expression ()XQF), so we
get to the last level (Fig. 3 c)), called GHIDXOW (since it
represents a possible set of values for a template), at which an
operation is completely specified.

For each operation type (or template) a group of available
templates (respectively, defaults) can be defined.
Each operation is defined following these three steps in order.
Here we distinguish “process” operations, where these phases
are all completed inside the process (such operations are then
independent from the product), and “product” operations,
where the third phase is specified when creating a product.
This cannot be done before, as parameters values depend on
the products, nor can it be done afterwards: a product has
indeed to be specified completely since lots will be physically
processed following its operation sequence (this is referred to
as product “instantiability”).
What has been set at the first two levels thus only needs to be
specified once in the process and can then be inherited by all
children products. This makes it possible to create new
products quickly, thus reducing time-to-market and then cost.
All presented up to now can also be extended to the step level
(hence, VWHS�D in Fig. 3 b) is a template, and in Fig. 3 c) there

Product Attributes

���
Attribute 1

Attribute i

���
Fig.2

OpSeq

Operation 1

Operation 2

���
Step 1

Step m

StepSeq

���

Fig.3

a) b) c)

B

Cmeasure value =
Func (mask)

1, ..., x

1, ..., y

1, ..., z

mask value=<?>

A value=<?>

mask value=<?>

measure value =
Func (mask)

B

C

A value=hx770

mask value=m115

measure value =
Func (m115)

4

is a corresponding default); a template step can only appear in
a template operation, whereas a default step can appear both
in a template operation and in a default operation, (a template
operation must have at least one template step, while a default
operation consists of default steps only).

����2SWLRQDOLW\�RSHUDWLRQV��([SUHVVLRQV�
The second class of operations has the same role of control
flow statements in a flow diagram.
In a sequence of operations, indeed, it is necessary to specify
one or more alternative paths, thus having a decision block
that, depending on a condition &, based on one or more
expressions, executes different sets of operations (paths) or
assigns different parameters to the same operation.
The decision block represents the class of RSWLRQDOLW\
RSHUDWLRQV, which do not imply any physical operations (no
steps inside), as it only contains a condition.
We have two operations levels for this class, one in which the
structure of the condition is set (logically equivalent to a
template), and one in which all the current values of the
variables in the conditions are known (similar to a default), so
conditions can be calculated and a path is chosen.
Like the previous class, optionality operations can generally
be “process-dependent”, i.e. completed inside the process, or
parameters values will only be known in product, so only the
structure of the condition is set in the process.
A generic condition can be viewed as an LI«WKHQ«HOVH
construct or a FDVH«VZLWFK, as it can contain one or more
H[SUHVVLRQV, each of which returns one of a set of values (so
an expression is not necessarily binary).
To make up an expression, classical operators (+, -, *, /,
AND, OR, NOT, as well as <, >, <>, =) are available and act
on HQYLURQPHQW� YDULDEOHV, i.e. on all information about
current hierarchical sub-tree (e.g. if the condition is set in a
product, the environment consists of all the attributes of the
parent process, and grandparent process family). Environment
can also include information from the whole hierarchy, as
well as user-defined variables.
Besides, an expression can be RII�OLQH� or RQ�OLQH. In the
former case, its evaluation depends only on definition of
objects in Fig. 1, hence is independent of the production flow,
while on-line conditions can be evaluated just when
production is being executed, e.g. because they depend on the
number of lots being processed at a certain time.
In an OpSeq defined in a process there may be both on-line
and off-line conditions, whereas in a product only on-line can
“survive” (anyway evaluated during production): all off-line
must be solved and replaced in the OpSeq for that product
with the path associated with result value.
Off-line conditions represent a powerful way to generalise,
since in a process we can specify different sub-sequences in
order to group more products; products then will differ not
only for parameter values, but even for these sub-sequences.
Finally, a condition can be QRQ�GHWHUPLQLVWLF when the choice
is human-dependent. This is modeled by introducing XVHUV
and XVHU� FODVVHV (groups of users with specific rights and/or
limitations). Non-determinism (which may be both off-line
and on-line) is implemented by adding users and classes to the
environment variables, so an expression like “#DGPLQ�FODVV”
means that the path will be chosen by any users with
DGPLQLVWUDWRU privileges during the creation of the object.
An expression can also appear in a production operation (as
the)XQF�above). Lastly we can have also optionality steps,

which can only appear in production operations (optionality
operations contain no steps).

����*RWR�DQG�/RRS�
It is also possible to have jumps in an OpSeq or in a StepSeq.
A jump can be conditional or not, using optionality
operations. When going to previous operations, a loop is
created. Composing all these options, we may have UHSHDW�
XQWLO, IRU��and ZKLOH�GR�or simple JRWR constructs (JRWR can be
used to change a sequence temporarily).

����0RQLWRULQJ�2SHUDWLRQV�
This class of operations is used to check or provide, during
production (execution of the sequence), the status of
parameters of interest, or an expression based on them. As
optionality class, these operations contain no steps, while
monitoring steps can be defined.

����3XWWLQJ�LW�DOO�WRJHWKHU�
A comprehensive example of a process is shown in Fig. 4; in
the OpSeq, entirely created during process definition, we have
a portion containing an optionality operation with a condition
&�, here supposed deterministic, binary and on-line.

From this operation we have two different paths, one with
operation D, and the second with E, assumed to be process-
dependent, and F, product-dependent. This means that type,
template and then default for E are all specified in the process
context, (in Fig. 4, E� is directly linked to its default, e.g.
containing only production steps). As operation F is product-
dependent (i.e. the default level is specified in the product), it
has a template, which possess at least one template step. G is a
monitoring operation. The subsequent optionality operation
contains a binary, deterministic, off-line condition &� with
two paths, operations H and I, the latter being product-
dependent, with a template containing a non-deterministic,
off-line optionality step (hence the condition #8). whose
choices are a template, D, and a default, E.
When a product child of this process is created, inheritance
mechanism offers a partially complete product, with at most

Process
OpSeq

Fig. 4

���

To be completed

Parameters

Complete

Template

Step template

Step default

Default

Step default

Step default

Template

Step template

Step template

@U

Step T. a Step D. b

C1

Oper. b

Oper. c

Oper. a

TrueFalse

C2

Oper. fOper. e

X2X1

d

���

5

template production operations (product-dependent) to be
specified at default level, with completed default operations
(process-dependent) that must not be altered (otherwise,
inheritance would be violated), and options and/or monitoring
operations containing expressions. Inside expressions (which
may also be present in production operations), there will be
environment variables already known (e.g. a process
attribute), variables known in product context (e.g. product
name), and variables to be completed manually inside
product. Having finished these three steps, all off-line
expressions will have to return a value such that the templates
can be completed, or the path to follow in an optionality
operation can be chosen, or the desired check (in the
monitoring operation case) can be made. In the on-line
expressions, missing parameters will only be known when
production will run.
By this hypothesis, a possible product child of the process
defined above is shown in Fig. 5, where it is assumed that &�
returns ;� and that the user #8 has created the product
choosing the right-hand side branch in the relative condition.

�� 6WDWHV�DQG�)60�
����&UHDWLRQ�
In the following, we consider states for process and product.
As stated in section 2, the first state is FUHDWLRQ, in which a
new instance for an object is created. This can be done from
scratch or by copying from other objects, having some
conflicts in the second case.
Indeed, when a product is copied, pasting the copied product
inside the same process, a conflict that arises concerns the
logical identity of the new product (it will be the logically the
same as the original until it is modified). If the copy is made
from another process (from the same or different process
family), the copied product is invalid (cannot be used) until it
meets inheritance constraints of the destination process.
Finally, we can copy a process and pasting it as a product. In
this case, the process also has to become a product, following
a procedure like that leading from Fig. 4 to Fig. 5.
If a process is to be created by copying, problems are similar,
and in some cases even simpler, due to the weakness here
established for process family semantics [11]. Copy issues are
somewhat similar to instance migration in OO databases [8].

����±�8SGDWLQJ�
The second state is XSGDWLQJ, in which it is possible to modify
the object, i.e. its attributes hence its associated objects, as
specified in the constitutional hierarchy; updating a process
includes the insertion, deletion and modification of each
single operation (and/or step), as well as alteration of their
order. It is therefore necessary to analyze the modifications
that can be made at the lowest level (step), propagating them
up to the operation level and then to the process or product.
Considering different steps classes, i.e. production, optionality
and monitoring, allowed variations for steps are WHPSODWHÈ
WHPSODWH, where the internal structure is varied, GHIDXOWÈ
GHIDXOW where just parameters are altered, and finally
WHPSODWHÈ�GHIDXOW�and GHIDXOWÈ�WHPSODWH, the former being a
specification and the latter a generalization task. Modifying
options or monitoring steps means altering their expressions
and/or conditions, eventually changing determinism and/or
off-line/on-line properties.

Starting from these step modifications, adding insertion and
elimination, allowed variations in production operations
(according to definition levels introduced in section 5.1) can
only concern the default level (i.e. in Fig. 6, '�È'�), can
also involve template (as in 7�È�'��and vice versa) or even
affect the type (i.e. '�È� 7� or 7�È� 7�). Modifications to
optionality and monitoring operations is the same as steps.
At the upper level, updating a process means modifying (as
shown), inserting or deleting its operations.
A process modification has to be propagated to its products;
this make them not instantiable (invalid) in '�È� 7� and
'�È�7� or 7�È�7� and 7�È�7�, i.e. when changes leads to
products that have to be completed (as from default to
template).
Besides, when a process is updated, lots (belonging to its
products) at a certain stage of processing may not undergo all
the modifications. A lot in progress, indeed, undergoes in a
sequential manner the OpSeq of a product, so modificating an
operation will not affect it if the lot has already undergone that
operation; we therefore introduce lot VHQVLWLYLW\� For instance,
lot 1 in Fig. 7 is sensitive to operation b updating, while 4 and
5 are insensitive; for lots 2 and 3 we have to decide the
granularity level of an updating action. If we set it at the
operation level, only lots before a modified operation will be
sensitive to it, so 2 and 3 will be processed using the old
version for b. If updating invalidates a product, the production
of sensitive lots will be halted until the product is ok.

Finally, when we want to modify just a product, the only
modifications that can be made are those which do not violate

Process
OpSeq

Fig. 5

���

Step default

Step default

Step D. b

&�

Oper. b

Oper. c

Oper. a

TrueFalse

Oper. f

d

���

Step default

Step default

DefaulV
Step default

Step default

Type1 Type2

T1 D1 T2 D2

Fig. 6

TemplateT

DefaultD

OpSeq Product

Fig. 7

���

���
Oper. d

Oper. b

Oper. a

Lot 1

Lot 2 Lot 3

Lot 4 Lot 5

Production Flow

Operation

Modified

Not Modified

6

inheritance rules (e.g. in Fig. 6, only '�È� '� is allowed,
since a product structure cannot be modified, so changes
involving templates and/or types are not allowed).
In addition, when modifying an object, changes can directly
affect it or lead to a new instance or to a new object’s version
(a snapshot of an object during its life cycle [4]).
Really, a version is considered as any other object; the
distinction between creating a new version or a new object
depends then on the modifications (in general, a new process
is created by PDMRU�changes, while a new version represents a
OLJKWZHLJKW�creation, due to PLQRU�changes). Versioning is a
powerful and complex tool, as it includes different versions of
an object (alternatives), as well as simultaneously active
versions and extensions for complex or composite objects,
where versioning for their component is introduced [9].
Finally, updating can be extended by introducing modification
on an object’s class, as well as on aggregation and/or
constitutional hierarchies [10]. It is also possible to modify the
structure and/or behaviour of an object, in addition to
changing its state, i.e. by introducing the concept of object
migration [8]. Since we want a strong semantics and a simple
model, such updating will not be considered here.

����'HOHWLQJ�
For large objects like process or product, as opposite to lower-
level objects (operations, steps), deletion is replaced with
REVROHVFHQFH, which prevents the object from being used in
production, as well as any updating, without, however,
eliminating it. A historical archive of objects (even data
warehousing oriented) can thus be created. Besides, when an
object becomes obsolete, obsolescence is propagated to all
objects in its sub-tree (so, if a process becomes obsolescent,
no more lots will be worked in any of its products).
When considering smaller objects, such as operations or steps,
deleting is allowed, but the real effect depends on wheter the
object is multiple or single istance. In the former case delete
really means “throw away” an object, while for single
instance case we may have local removing (deleting just the
link in the object where action is invoked, e.g. remove the
presence of an operation in a given OpSeq), global (e.g.
removing an operation from any OpSeq it appears), or total
(i.e., deleting an operation also from the library it belongs). In
some cases referential integrity problems may arise [4].
Finally, invoking a deleting action may involve some on-line
questions [11].

����)60�
A Finite State Machine for a process or product is shown in
Fig. 8.

The object will be in state I when just created, while when
completing it (if starting from scratch) or making it different
from origin object (if copied), we move in U state. The C state
is as U, but with LQVWDQWLDELOLW\� property [11] (that is the
possibility of creating products children for a process, and of
operating on lots for a product).

Transitions UÈC and viceversa are allowed, while UÈI and
CÈI cover new object or new version creation. Ct is a
transitory state, representing an istantiable process (or
product) when it is modified (CÈ Ct), used in order to split
lots that will be worked with modified object from those left
under original object, choosing lots from sensitive list (section
6.2). After all lots under original object have been worked, the
“modified” object overwrites original (CtÈI). Influence of
some transitions made on and received form other object
states may also occur [11]. The FSM presented is quite
simple. In [11], we consider all other objects, in particular
operations (and steps), which have the most complex
behaviour, since its several states depends on attributes
completion (mandatory and optional), and on the possibility of
using that operation in creating product and if it will be
updatable inside a product.

��&RQFOXVLRQV�
We presented a logical model for production flow in a
manufacturing system environment, adopting object-oriented
databases techniques. We first defined general objects
characteristics, then we illustrated hierarchies used for object
aggregation and composition.
We then considered in detail process and product, which
represents core objects. We introduced three classes of
operations and steps (production, optionality and monitoring)
used inside these objects, and their characteristics (template,
default, expression), presenting a comprehensive example for
a process and a product child. Finally, we considered states
for an object (creation, updating, deleting) with related
questions, giving an example of FSM for process and product.
The model presented is a logical, high-level way to describe
manufacturing process sequences, achieving both complexity,
abstraction and flexibility requirements.

5HIHUHQFHV�
[1] McLean C. et al. - $�FRPSXWHU�DUFKLWHFWXUH�IRU�VPDOO�EDWFK
PDQXIDFWXULQJ - IEEE Spectrum, 20(5):59-64 - 1983
[2] Gupta U.G. – 0DQDJHPHQW� LQIRUPDWLRQ� V\VWHPV�� $
PDQDJHULDO�SHUVSHFWLYH – West publishing company, 1996
[3] Kim W. - 0RGHUQ�'DWDEDVH�6\VWHPV - Acm Press 1995
[4] Bertino E., Martino L.R. – 2EMHFW�2ULHQWHG� 'DWDEDVH
6\VWHPV�±�&RQFHSWV�DQG�$UFKLWHFWXUH�±�Addison Wesley 1992
[5] Maier D., Zdonik S. -)XQGDPHQWDOV� RI� 2EMHFW�2ULHQWHG
'DWDEDVHV� – in Readings in OODBMS, Morgan Kauffman
1989
[6] Atkinson M. et al. - 7KH�REMHFW�RULHQWHG�GDWDEDVH� V\VWHP
PDQLIHVWR - in Proc. of First intl. conf. on DOOD, Kyoto 1989
[7] Kim W. et al. - &RPSRVLWH� REMHFW� UHYLVLWHG - in Acm
Sigmod - Portland 1989
[8] Zdonik S. - 2EMHFW�RULHQWHG� W\SH�HYROXWLRQ - in Advances
in database programming languages - Addison Wesley 1990
[9] Katz R. - 7RZDUGV� D� XQLILHG� IUDPHZRUN� IRU� YHUVLRQ
PRGHOLQJ� LQ� HQJLQHHULQJ� GDWDEDVHV - in Acm Computing
Surveys, 22 No.4 1990
[10] Banerjee et al. - Semantics and implementation of
schema evolution in object-oriented databases - in Proc. of
Acm-Sigmod - San Francisco 1987
[11] Longheu A. - 0DQXIDFWXULQJ�PRGHOV – Technical internal
Report No. IIT-1999-43

Fig. 8

State

InsertI

UnistantiableU

ObsolescentO

I

O

U

Complete (Updating)Ct

C Ct Complete (Istantiable)C

