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Abstract. - The development of tools for the design of both hardware and software systems draws great
benefits from the use of formal methods, especially if they offer a descriptive capacity which covers real
applications. On the basis of the T-LOTOS language, a language called TTL has been developed, which adds
new constructs and tools to the considerable existing expressiveness of the original language, thus making it
suitable for the specification of hardware and software systems of real complexity. Some of the extension
proposed covers the aspects of modularization of the specification, the introduction of iterative construct and
a first moving to object paradigma. An extensive example of the use of TTL is presented to show its

characteristics.

Key-Words: - Modeling, Formal Verification, Verification and Validation, Computer Algebra, Analysis and

design tools.

1. Introduction

The problem of designing and specifying complex
systems for which constraints of time and
synchronization - with the outside world or other
systems - have to be respected, is a highly debated
topic. It is generally dealt with by imposing precise
design methods which make it possible to test that
the results obtained meet the requirements laid down
when the system is defined (CAD methods and
software engineering). Fundamental in any design
method is the choice of a specification technique
which  allows systems to be described
unambiguously and clearly. One sector where the
problem has been dealt with is that of
communication protocols, where the first studies on
the application of formal description techniques to
design were made, and in this context a number of
particularly suitable languages (or FTDs - Formal
Description Techniques) have been standardized,
such as LOTOS [1][2] and ESTELLE [3].
Experience acquired with communication protocols
suggested extending the field of application of FDTs
to other sectors such as hardware design [4].

Until a few years ago hardware systems were
designed using CAD tools, mainly based on graphic
editors, which enabled designers to define the
electrical scheme of the connections between the
various components, and programs whereby it was
possible to extract a certain amount of information
from them. This information was used to test and
simulate the behaviour of the device. Interpretation
of the results depended on the ability of designers
who wused their experience to guarantee the

correctness of the design. If the system needed
interaction between the hardware and software
components, the two parts were usually separated at
the very beginning of the design cycle. They were
therefore developed independently, with little
interaction up to the integration phase. This
approach limited the opportunity to explore possible
hw/sw trade-offs, such as moving certain functions
from the software to the hardware domain (and vice
versa), and greatly complicated both design and
assessment of the cost due to interfacing between the
two parts. The development of circuit technology led
to an increase in the number of elementary devices
on a single chip and thus to a need to design a device
not at the gate level but as a set of appropriately
connected blocks (memories, adders, etc). This led
to the definition of languages to describe hardware
systems (e.g. VHDL [5] and Verilog [6]). The
increasing complexity of systems has pointed to the
necessity of applying to the design of hardware
devices the knowledge acquired in the development
of distributed systems, such as the use of formal
tools.

Recently considerable interest has been shown in the
proposal to integrate the design of software and
hardware components in such a way that it is not
necessary to make a preliminary choice, but rather to
leave the decision to implement certain components
in hardware or software to the final stages of design.
One of the most widely investigated fields in this
context is that of control-dominated embedded
systems , i.e. systems which react to external stimuli
by performing a certain action, choice of which does
not involve very complex calculations.



Our work fits into this context: its aim is to propose
a framework which will be of help in the
development of systems belonging to the category
mentioned above. In this paper we describe the
language we have chosen as specification language
(called Templated T-LOTOS) and its application to
an example of an home automation system
(integrated management of the heating, lighting and
alarm etc. systems). In this example we show the
peculiar features of the language and the advantages
it offers, mainly in making the description modular
and modifiable. We also discuss the various stages
which led to the development of the example and
how it can easily be extended, thanks to the
characteristics of the language.

2. Templated T-LOTOS

The first problem that had to be tackled was that of
choosing a specification language which must be
suitable for both software and hardware. Several
FDTs suitable for this purpose have been proposed
in literature, one of the most interesting being
XCIRCAL [7] based on the process algebra called
CIRCAL [8]. With the formal model CIRCAL it is
not possible to deal with quantitative time
references. Another language that has been used to
specify hw/sw systems is ESTEREL [9], which has
been proved to be equivalent to the Extended FSM
model.

The language we have chosen as a basis for the
design of hardware-software systems (see [10][11]),
in the attempt to overcome the limits of the
languages mentioned above, is an extension of T-
LOTOS [12] called TTL[13] (Templated T-
LOTOS). T-LOTOS derives from LOTOS which
allows time constraints to be specified. It has already
been widely used to specify complex systems,
mainly in the area of communication
protocols [14] [15], but there are also examples of
application to hardware systems [4].

When applied to the description of mixed systems of
real size, T-LOTOS has certain limits relating to the
impossibility of making modular specifications. This
involves economic problems as libraries of already
developed parts cannot be re-used. In addition, the
lack of tools to modularize specifications makes it
difficult to share the specification work out between
people, as it requires greater interaction between
designers. This aspect is fundamental because the
complexity of the systems to which we are applying
these techniques is such as to require the
collaboration of a large number of people, often
specializing in different areas. These considerations
led to the proposal to extend T-LOTOS. The features
of TTL which made it useful for the application in
the scenario above presented are:

1. Formal base. This is the key feature of the
language; it allows us to describe a system in a
clear and unambiguous way. Many systems are
often used in life critical situations, where
reliability and safety are the most important
criteria. Formally defined languages allows us to
meet this requirement.

2. High degree of abstraction. This feature allows
us to reduce the complexity of the description
and permits us both to describe software and
hardware systems due to independence from
target architecture.

3. Concurrency. This features permits us to model
real life systems which are generally made by
several parts evolving concurrently.

4. Time attributes. This features allows us to
describe time requirements of real life systems.

5. Modularity. This feature permits to use already
specified and tested parts so allowing to save
time.

Some of the previously mentioned features are

already owned by LOTOS and T-LOTOS.

The TTL extensions allow a modular description and

also offer the possibility of describing generic

modules (template). To add further flexibility to the
language, extensions to the basic constructs are also
proposed to make the specification of frequent
situations, such as repetitive cycles, more compact.

The ways in which these extensions are integrated in

the T-LOTOS model are discussed in [13]. One

particular feature of the extensions made is that they

do not preclude use of the tools available for T-

LOTOS, for instance LOLA[16] which allows a

complete analysis and simulation of the

specification.

3. A Case Study

We will now give an example of the use of TTL in
describing a complex system. It is the description of
a home automation system (integrated management
of the heating, lighting and alarm etc. systems)
which manages a large number of sensors and
actuators with great flexibility.

The main components of the system are the master,
the peripheral control panels and the controllers of
the sensors and actuators. Each sensor and actuator
in the system is identified by a 16-bit address, the
first 8 of which identify one of the 256 possible
peripheral panels, and the last 8 one of the 256
possible actuators or sensors connected with it. It is
therefore possible to have 256 control panels, each
of which can control up to 256 sensors and
actuators. The addresses of both are assigned in the
instantiation phase.

The following is a detailed list of the components
and the relative TTL specification; for reasons of



space and simplicity the part concerning the
definition of data types has been omitted.

3.1 Master

The master is the component which coordinates all

the peripheral control panels to which it is

connected. Its tasks are:

e to read from a serial line (Sl) the values with
which to configure the various sensor controllers;

e to distribute the sensor configurations to the
peripheral control panels (Mout);

e to dialogue with the wvarious control panels
through a dedicated line for each panel (Miny).
Part (a) of fig. 1 is a graphic representation of the
master, while part (b) shows the declaration and

TTL definition of the Master module.

module Master is
. process Main [S], Mout, Min[N]]:
SI | end Master
MASTER —
Master:: process Main [S], Mout, Min[N]]: noexit:=
let i:int=0 in
SI?indsa:int; Sl?val:int; Mout!indsa; Mout!val;Main[SI, Mout, Min[N]]
Il
Min,  Min, Mout (choice g in [M[N]] [] g?indsa; g?val; Mout!indsa:Mout!val:
Main [S1, Mout, Min[N]])
endproc
(a) (b)

Fig.1: Master Module Schema, its declaration and definition

The Master process is a TTL template; as it can be
parametrized with respect to the number of gates, it
is possible to describe the set of Masters for varying
numbers of control panels as a single process.

It should be noted that in the template context M[N]
is a list of N gates which will be defined when the
templates are instanced; so M[N] can be used
anywhere a list of gates is provided for. In fig. 1, for
example, choice g in M [N] will be translated into
choice g in [g;,2.....g,] where g;, g,...,g, are the
elements of the vector M.

3.2 Peripheral Control Panel

A peripheral control panel is the part of the system

which controls the sensors and actuators. Each one

has an 8-bit address by which it is selected by the

master. The specification of the control panel is

given in such a way as to allow flexible use in

various situations. Part (a) of fig. 2 gives a scheme

of the panel, while part (b) shows the declaration of

the Cent Per module. The parameter ind is the

address of the panel, given when it is instanced.

The control panel has three parts:

¢ a Sensor Manager which deals with the sensors;

* a Act Manager which deals with the actuators;

e a Routing Table which deals with the
correspondence between sensors and actuators.

T module Cent_Per is
T private:
Ming process Sensor_Manager [Minl, Sout, Sin[N]. Rin](ind : int);
K process Act_ Manager [Min2, Rout, Aout](ind : int);

public:

process Main [Minl, Min2, Mout, Sout, Sin[N], Aout]

(ind : int)<Routing_Table[Rin, Rout, Mout|>;

end Cent Per

in ou
Sensor [ Rout. [ Act
Manager Table

Sout.

(a) (b)

Fig.2: Control Panel schema and its declaration
A definition of the Main process is given in fig. 3
whereas fig. 4 gives the definition of the other
processes declared in fig. 3.

Cent_Per:: process Main [Minl, Min2, Mout, Sout, Sin[N], Aout](ind : int)
<Routing_Table [Rin, Rout, Mout]>: noexit:=
(Sensor Manager [Minl, Sout, Sin[N], Rin](ind)
[[Rin]Routing_Table [Rin, Rout, Mout]
[[Rout]|Act Manager[Min2, Rout, Aout](ind))
endproc

Fig.3: Control Panel main process definition

It should be noted that in this process another
characteristic of templates is used, that is the chance
to parametrize with respect to the process names. In
this case the actuator-sensor connections are only
defined when the control panel is instanced, thus
allowing a highly generic description of the device.
In the definition of Cen Per a loop is used to
specify the polling cycle in an extremely simple and
natural way.

Cent_Per:: process Sensor_Manager [Minl, Sout, Sin[N], Rin](ind : int): noexit:=
let i:nat=0 in
loop (i<N; i+1; S_M1[Minl, Sout, Sin[N], Rin](ind,i))
>> Sensor_Manager [Minl, Sout, Sin[N], Rin](ind )
where process S_MI1[](ind,i: int):noexit:=
Sin[i]?indsa:int; Sin[i]?val:int;
(Rin!(indsa+ind); Rin!val;exit

1

Minl?indsal:int; Min1?vall:int;

([((indsal)>=(ind*256)) AND (indsal<((ind+1)*256)]->
Sout!(indsal-ind*256);Sout!val1; Rin!(indsa+ind*256); Rin!val;exit

[]
[(indsal<(ind*256)) OR (indsal>=((ind+1)*256)]-> Rin!(indsa+ind*256); Rin!val;exit
)

)

endproc
endproc

Cent_Per:: process Act_Manager [Min2, Rout, Aout](ind : int): noexit:=
Min2?indsa:int; Min2?val:int;
([(indsa>=(ind*256)) AND (indsa<((ind+1)*256)]->
Aout!(indsa-ind);Sout!val;Act_Manager [Min2, Rout, Aout](ind);

[l
[(indsa<(ind*256)) OR (indsa>=((ind+1)*256)]->Act_Manager [Min2, Rout, Aout](ind);
)
1]
Rout?indsa; Rout?val; Aout!indsa; Aout!val; Act Manager [Min2, Rout, Aout](ind);
endproc

Fig.4: Control Panel internal processes definition

The sensor Manager, the TTL definition of which is
given in fig. 4, essentially has two tasks:
e it transmits the data received from the Master

(Min) to the local sensors (Sout);
it polls the sensors to collect their data (Siny).
Fig. 4 gives the TTL definition of the Act Manager.
Each sensor can interact with one or two actuators
(e.g. the presence sensor can affect the functioning
of both the heating system and the alarm system).
The sensor address-actuator address link is given by
the Routing Table, which has to be specified



according to the specification of the single control
panel. In T-LOTOS this would mean as many
descriptions as there are panels. To make the
description of the Cent Per module as generic as
possible, we use one of the characteristics of TTL
templates - the possibility of using generic names for
processes in a given description. In this way there is
only one description of the peripheral control panel,
which can be personalized every time a panel is
instanced giving it the name of the Routing Table
process. The latter has the task of sending to the
master the data relating to actuators located in other
panels, which the master will then send to the proper
destination.

3.3 Sensor Controllers

Fig. 5 gives a scheme and TTL definition of the
Sensor-Controller module, which controls the
sensors. In the instantiation phase the address of
each controller is given (ind,), by which it can be
selected to be sent data and the reference value
(val). In addition, each controller can decide what
action the actuator is to take according to difference
from the reference value.

Through the input line C,;, it is also possible to
change the reference value dynamically.

‘ l module Sensor_Controller is
Coin  Cpout process Main [Cpin, Cpout, Svall(inds : int, val : int);
end Sensor_Controller
Sensor
“ontroller
Cldiwilty Sensor_Controller:: process Main [Cpin, Cpout, Svall(inds : int, val : int)moexit:=
Sval Cpin?indsazint; Cpinnval:int:(|indse=inds|-> Main [Cpin, Cpout, Sval|(inds, nval);
il
|indsal=inds|-> Main [Cpin, Cpout, Sval|(inds, val);,
)
1]
S Sval?xint([x>val]-> Cpout'inds, Cpout! DEC: Main [Cpin, Cpout, Svall(inds, val):
' 1]
[x<val] -> Cpout!inds; Cpout!/TNC; Main [Cpin, Cpout. Sval](inds, val);
1]
[x=val]-> Cpoutlinds; Cpout'NO_ACTION; Main [Cpin, Cpout, Svall(inds, val):
)
a
@ ®)

Fig.5: Sensor-Controller schema, its declaration and definition

3.4 Actuator Controllers

Each actuator has a controller which interacts with
the Act Manager and the actuator. From the Act
Manager it receives data concerning the actions to
be performed and transmits it to the actuator. Fig. 6
gives the scheme and TTL definition of the

Cpin module Act_Controller is
Act process Main [Cpin, Aval](inda : int);
Controller end Act_Controller

Aval

Act_Controller:: process Main [Cpin, Aval](inda : int):noexit:=
Cpin?indsaint; Cpin?valint;(  |indsa=indal-> Avallval; Main |Cpin, Aval|(inda);

Ll
[indsa!=inda]-> Main [Cpin, Aval](inda);
)

cendproc

@ (b)
Fig.6: Actuator Controller schema, its declaration and definition

Act_Controller module, which has an 8-bit address
(ind,).

3.5 Example of Application

To show the flexibility of the TTL specifications of
the various components, we give an example in
which a specific home automation system is
designed starting from generic components. It
should be noted that, given the way the components
are specified, it is possible to design systems with a
complex structure.

MASTER
'mm‘—lminz
—1—¢ *

| CENT_PER, |

Fig.7: Using modules to build a complete application

Let us assume, for instance, that we want to specify

a system with the following features:

e asystem which covers three separate rooms;

e for two of the three rooms, control of
temperature, lighting and the alarm system;

 for the third room, control of the lighting system
alone;

* local management of the heating and lighting
system and global control of the alarm system.

use comp.dec
specification Home_Automation_System [SL Sv11, Sv12, Sv13, Av1, Avl2, S¥21, Av21, Av22, Sv31, Sv32, $v33,
AV31, Av32] : noexit=
behaviour

(CC(((Master. Main[ S1, mbus, min|minl, min2, min3]|

|minl, mbus|| Cent_Per.Main|mbus, mbus, minl, Soutl, Sin[$11, $12, $13], Aoutl [(0))<R_I1[R1in, Rlout, minl |>)
min2, mbus|| Cent_Per Main|mbus, mbus, min2, Sout2, Sin|$21], Aouw2](1)<R_12|R2in, R20u, min2|>)

l

|min3, mbus|| Cent_Per. Main|mbus, mbus, min3, Sout3, Sin[$31, $32, $33], Aout3|(2)<R_I3|K3in, R3out, min3|>)
[S11. Soutl]| Sensor_Controller. Main[$11, Sout!, $v111(0, 23))
[S12. Soutl]| Sensor_Controller. Main[$12, Sout!, $v12](1, 23))
[S13. Soutl]| Sensor_Controller. Main[$13, Sout!, $v13](2, 25))
Act_Controller. Main| Aoutl, Av11](3))
Act_Controller. Main| Aoutl, Av12](4))

[521. Sout2]] Sensor_Controller. Main| 821, Sout2, $¥21 (9, 25))
Act_Controller. Main| Aout2, Av21](1))

1 Act_Controller Main[Aout2, Av22](2))

[S31, Soutl]| Sensor_Controller. Main[$31, Sout3, $v311(0, 25))
[S32. Soutl]| Sensor_Controller. Main[$32, Sout3, $v32](1, 25))
1833, Soutl || Sensor_Controller. Main 833, Sout3, $v33/(2, 25))

[Aout3 | Act_Controller. Main| Aout3, Av31](3))
[Aout3]| Act_Controller. MainAout3, Av32](4))
where

process R_T1[R1in, Rlout, min1 : noexit:=
Rlin?inds:int, R1in?valint([inds=0]-> R1out!3; Rlout!val, R_T1[R1in, Rlout, minl|;

I

[inds=1]-> Rlout!4; Rlouttval R_T1[R1in, Rlout, minl],

1}

[inds=2]-> minl |(1*236+2), min1!val; R_T1[R1in, Rlout, minl];
)

endproc
process R_T2|R2in, R20ut, min2]: noexit:=
R2in?inds:int; R2in?val int;(|inds=0]-> R2out! 1; R2outlval; R_T2[R2in, R20ut, min2]:

i
[inds=1]-> R_T2[R2in, R2out, min2];
endproc
process R_T3[R3in, R3out, min3]: noexit:=
R3in?inds:int; R3in?val int;(|inds=0]-> R3out!3; R3out!val, R_T3[R3in, R3out, min3|;
1l
[inds=1]-> R3out!4; R3out!val R_T3[R3in, R3out, min3];

1}
[inds=2]-> min31(1#256+2); min3'val: R_T3[R3in, R3out, min3];
)
endproc
endspec

Fig.8: TTL description of complete system

Fig. 8 shows the main specification of the system
which makes use of a library of modules already
analyzed, called comp, the schema of the system is



given in fig. 7. Of interest is the description of the
various Routing Tables, which are passed to the
Cent Per module, and the compactness of the
description (fig. 8). This is due to the language,
because although the number of rooms may vary the
reference library does not.

4. Conclusions

TTL has been developed to specify complex hw/sw
systems.

It covers many of the gaps left by T-LOTOS, such as
the lack of modularization mechanisms, iterative
constructs and the capacity to define generic
processes.

TTL has been devised in such a way as to be
consistent with the object paradigm and further work
is being done in this direction.

A TTL specification can be translated into a T-
LOTOS one by means of an automatic tool which
copes with references to external modules, expands
loop constructs and replaces all the template
instantiations with the relative T-LOTOS processes.
This is a fundamental point because it guarantees the
possibility of using all the tools which already exist
in T-LOTOS.

In this paper a complete example of application of
the TTL to a real case has been presented.
Furthermore the example has been analyzed using
the tools developed for LOTOS, simply by
converting TTL specification into LOTOS one.
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