
Data Distribution, Analysis and Evaluation of code
- An Expert System Approach

P. J. P. MCMULLAN, P. MILLIGAN and P. H. CORR
School of Computer Science

The Queen’s University of Belfast
Belfast BT7 1NN

NORTHERN IRELAND

Abstract: - Considerable research has been carried out into the problem of porting sequential legacy codes to a
parallel equivalent for execution on multiprocessor computer systems. The potential improvement in execution
performance has made this a worthwhile task, although there has been limited success in the search for a solution.
The systems which have made the most advances in this area are those which utilise existing knowledge relating to
the problem. This paper focuses on a system which employs a suite of knowledge based expert systems to provide
intelligent parallelization of legacy codes. Each stage of the transformation process is illustrated with examples and
justification of the expert system decision making processes. An illustrative case study based on a mathematical
Fortran code is used to demonstrate the success of the system.

Key-Words: - Automatic, Intelligent, Parallelisation, Distribution, Expert-Systems, Knowledge-Based,
Multiprocessor IMACS/IEEE CSCC'99 Proceedings, Pages:5241-5246

1 Introduction
There has been considerable research over the last
number of years into systems aimed at transforming
existing legacy programs to an equivalent form for
execution on multiprocessor systems with the
intention of obtaining an improvement in execution
performance [1,2,3]. This has led to the realisation
that the level of expertise needed from such a system
is similar to that which a human expert applies when
parallelizing sequential programs by hand.
 The responsibility of providing expertise still lies
with the user in existing parallelization systems. Data
distribution is one of the major obstacles limiting
pure automation within the parallelization process. A
system which automatically provides effective data
partitioning algorithms can be considered suitable in
replacing the human expert [4,5,6,7]. The Fortport
project [8,9,10] provides a solution to this problem
by presenting a suite of tools to apply AI technology
in the parallelization of sequential codes. This
approach is based on an underlying knowledge model
to influence the transformation process.

2 The Fortport Solution
The Fortport system consists of a number of inter-
related components, as shown in Fig. 1. The Input
handler accepts Fortran 77 source code and converts
it into an intermediate form; a hierarchical syntax
graph. This provides an effective structure for
transformation of the program code. The
Transformation stage uses transformation tools
guided by an expert system to restructure the syntax
graph and remove data dependencies. The
transformed graph, known as the potentially parallel
graph, is used as input to the Generation stage.
 The Generation stage consists of a suite of analysis
and distribution tools again guided by an expert
system which produces a parallel equivalent of the
input sequential program. The generated program is
executed on the target architecture. The results
obtained are analysed by the evaluation tools to
determine if additional refinement or a new data
distribution strategy is required. Feedback is then
provided to the generation stage. The feedback cycle
continues to redefine the parallelization strategy until
the optimum parallel performance has been achieved.

Fig. 1 The Fortport System

3 Knowledge Sources
The knowledge base used by the expert system is
built upon a number of knowledge sources.
These sources include Architecture specific
knowledge, Source code characteristics, Expert
System parallelization knowledge, Expert User
parallelization knowledge, Sequential and Parallel
performance statistics and Parallelization strategy
records.

The human expert uses each knowledge source to
influence the steps involved in parallelizing a
sequential program. To emulate this process
effectively, the knowledge must be captured and
stored effectively. A mechanism is also required
which enables the information to be used to form
decisions in a similar manner to the reasoning
processes of the human expert.

4 Knowledge-based Expert Systems
Two approaches to utilizing knowledge are with the
use of Neural Networks and Expert Systems. Both
forms of artificial intelligence allow patterns or rules
to influence the structure or outcome of decisions.
The KATT system uses Neural Network technology
to isolate characteristics to influence data distribution
in the parallelization of legacy codes.
 Fortport uses the CLIPS Expert System to examine
code at a structural level. The Expert System is
beneficial for the problem at hand, allowing the use
of knowledge sources such as expert system
parallelization strategies. The novice user can rely on
expert system decisions, whereas the expert user can
influence the decision making process.

 Throughout generation and evaluation, a
knowledge base is maintained to record and utilize
relevant information obtained from the pool of
knowledge sources, such as an appropriate
parallelization strategy. Information within this
knowledge base forms the parameters which
influence the entire transformation process. The
expert system tools utilize the knowledge base to
drive the generation and evaluation stages. The
knowledge base is also used as a record of successful
parallelization strategies.

5 Generation and Evaluation
The generation and evaluation stages comprise five
main tools, as shown in Figure 2; Program Modeler,
Sequential Performance Analyser, Data Distribution
Tool, Code Generation and Parallel Performance
Analyser. Each of the tools consist of several
components which handle analysis, transformation
and decision making processes.
 The Program Modeler is used to perform a source
code analysis of the transformed program in an
attempt to model the behaviour of the program when
executed. This information is used to highlight areas
of the code for further analysis. The modeler also
builds up a database of information, the
characteristics of certain sections of code, in order to
help identify suitable parallelization strategies. The
Program Modeler includes a Program Model
Analyser and a Profile Guidance Evaluator. The
Profile Guidance Evaluator uses estimation results
from the Program Model Analyser to decide on the
best profiling technique to be used in subsequent
sequential performance analysis.

 FORSTRUCT

 L S

 dep-anal

 E.S.

 Code
 Gen.

Input Handler Transformation Stage Generation

F77 dep-reduction

 E.S.

 CSTools

 Parallel
 Perf-Anal

 E.S.

Prog-
modelling
 Sequential
 Perf-Anal

Evaluation

Fig. 2 The flow of control between modules

The Sequential Performance Analyser identifies
sections of the sequential program for which
parallelization will be most beneficial. These areas
are identified from the results of profiled sequential
execution, which highlights computationally
intensive areas of the sequential program.
Parallelization tools are then concentrated on these
hotspots. The Sequential Performance Analyser
contains a Code Profiler, which produces a sequential
version of the program which, when executed,
produces real-time performance information. This
information is then used by the Sequential
Performance Evaluator to decide which areas are
conentrated upon in the distribution phase.
 The Data Distribution Tool is the main
parallelization tool within the system. It converts
from sequential to parallel, generating processes and
distributing work among the processors. Source code
analysis and profiled execution analysis influence the
parallelization decisions taken. Characterization and
Distribution Analysis is performed on the sequential
code using the information obtained earlier. A
Strategy Evaluation mechanism then builds a list of
parallelization strategies, from which the best
apparent strategy is chosen. Alternative strategies can
be chosen from the list based on further parallel
performance analysis.
 The Code Generation Tool creates the parallel
source code for the parallelized equivalent of the
original sequential program. The Parallel
Performance Analyser uses the execution of this
parallel version to identify performance
improvements which can be made and isolate the
most effective parallelization strategy. A Parallel
Code Profiler provides real-time parallel execution
performance results. The Parallel Performance
Evaluator determines how successful each
parallelization strategy has been in achieving a
performance improvement, both in terms of the
sequential program and previous parallelization

attempts. An improvement cycle is implemented to
pass control back to the Data Distribution Tool.
 The user can choose to interact with the system at
any stage, and can influence choices and decisions
based on human expertise. The novice user may
choose not to interact with the system, in which case
decisions are left to the expert system.

5.1 Profile Guidance Evaluator
The performance estimation results of program
model analysis are used to decide which sections
of code require performance analysis and how
much profile information is required and
obtainable. Under ideal circumstances all parts
of a sequential code can be profiled. However,
factors which may restrict this include sequential
execution time, profile degradation and
information excess. There are three main steps in
the operation of the profile guidance evaluator:
initial evaluation (is profiling possible), hotspot
evaluation (Potential hotspots) and profile level
evaluation (amount of information possible and
required).
 Hotspot evaluation requires estimating the
potentially significant (computationally intensive)
areas of code. The evaluator decides whether the area
may be a hotspot and the level of profiling required,
based on the estimated performance results. The user
can decide to preclude areas which, based on their
expert-user evaluation may not signify as a hotspot.
The level of profiling for each hotspot can also be
changed. An example of one of the rules used by the
expert system to choose profiling level follows:

(defrule mem-1
 (profile-usage (level all)
 (amount ?needed)
 (accuracy 100))

 Program
 Modeler

 Sequential
 Performance
 Analyser

 Data
 Distribution
 Tool

 Code
Generation
 Tool

 Parallel
 Performance
 Analyser

feedback

 Potentially
 parallel
 syntax graph

CSTools
Fortran

 (mem-allows (amount ?available)
 (accuracy 100))
 (test (> ?needed ?available))
 =>
 (assert (advice profile-level all)))

The memory available and memory required for the
desired level of profiling are compared. If the
memory resources are sufficient, profiling at this
level is possible. A new expert system rule indicating
this is created.

5.2 Sequential Profile Evaluator
Whereas performance estimation is a guide to
locating potential hotspots, the Sequential Profile
Evaluator bases decisions on actual performance
statistics. Compute-intensive sections of code are
identified and distribution techniques are applied in
an attempt to improve overall program performance.
However, some sections of code may still be
considered unsuitable for parallelization, due to the
existence of data dependencies between statements or
input and output statements. Although in some cases
data dependencies can be removed, input/output is
treated as a serious obstacle. The evaluator is
designed to identify this and remove such sections
from the parallelization target area:

 (defrule check-input-output
 (loop (loop ?loopnum)
 (input-output true))
 ?old <- (fact hotspot loop ?loopnum)
 =>
 (printout “Loop cannot be

 parallelized due to I/O”)
 (retract ?old))
The evaluator can advise to terminate the
parallelization process for cases where no hotspots
exist or sequential execution time is too small to
warrant parallelization. The expert user can over-ride
such decisions.

5.3 Data Distribution Strategy Evaluator
The Data Distribution Strategy Evaluator will make
decisions on how best to parallelize the hotspots
identified. Decisions made are based on the structure
of the code under parallelization and feedback, if
any, resulting from performance analysis from
previously attempted data distribution strategies
within the parallelization cycle. The distribution

strategy is chosen from a set of possibilities in “best
first” order. Distributions possible are dictated by
characteristics of the hotspot code; for example, the
amount and type of data dependencies which exist
between statements in the body of a loop. When a
particular distribution is chosen, further evaluation
will decide on a more detailed strategy based on the
code structure.
 The factors which distribution influence are types
of data partitioning available, processors required and
processor communication, message-passing
optimization and load-balancing. For example, the
choice of optimal number of processors for a
parallelization strategy is dictated by the loop bounds
of a loop-based hotspot:

 defrule loop-bound-check-1
 (loop ?loop ?iterator ?bound)
 (test (>= ?bound 16))
 (test (= (mod ?bound 16) 0))
 =>
 (assert (incr-popularity-16)))

The History Knowledge Base can provide
information on previously successful distribution
strategies which have employed on programs with
similar characteristics.

5.4 Parallel Profile Evaluator
The Parallel Profile Evaluator evaluates the results of
parallel performance analysis to indicate the level of
success for the current parallelization strategy.
Decisions are fed back to the data distribution stage,
forming the improvement cycle. The improvement
cycle is concerned with finding the optimum parallel
performance, using a Situation and Result
comparison for each phase of the cycle. The Situation
defines strategy information such as data distribution,
processors used, load balances and communication
flags. The Result for one situation comprises hotspot
execution time, computation time, communication
send/receive time and communication idle time.
 Success evaluation can establish whether the
current strategy is the most effective. Feedback to the
data distribution stage involves choosing possible
improvements and which may be most effective.
Improvements which have already been applied are
disregarded:

 (defrule decide-15
 (okay-to-rebalance)
 (attempted-advice rebalance)
 =>
 (printout t “Rebalance
 already attempted” crlf))

5.5 The History Knowledge Base
The History Knowledge Base is a structured
collection of program code characteristics and
associated parallelization strategies built from many
previous parallelization attempts. Whether effective
or not, these strategies can be used to compare
against similar programs fed into the system in order
to further influence decisions during the
parallelization process. During each stage of
evaluation, program characteristics, parallelization
strategies attempted and associated results are
included in the Knowledge Base.

6 Illustrative Case Study – A
Hessenberg-Schur Algorithm

To demonstrate the viability of the Expert System
approach in automatic parallelization of legacy
codes, a case study is introduced. The case study is a
non-trivial Hessenberg-Schur Algorithm which is
implemented as part of a mathematical package
called the Sylvester system. The program is called
“SYLG” and is used by The Department of Applied
Mathematics and Theoretical Physics at The Queen’s
University of Belfast [11].
 The original “SYLG” code is input to the pre-
parallelization transformation tools. The code is then
ready for analysis and tranformation to parallel form.
The program modeller builds up a list of estimated
performance characteristics. These indicate which
areas of code are potential hotspots. Four loop blocks
are identified, and the percentage of the total
estimated execution time for each is output. One loop
is identified as compute intensive:

 Loop 1 label 130 takes 91% of
 full execution time
 ASSERTION: Loop 1 is compute-
 intensive
 Taking this advice

The expert system determines that this loop block
will require profiling in order to determine precisely

whether it is compute intensive. Sequential profiling
takes place and the expert system analysis proves that
the loop is indeed a hotspot:

 Loop 1 label 130 takes 18.27 s
 ASSERTION: Loop 1 is compute-
 intensive
 Taking this advice

Parallelization can be concentrated upon this section
of the “SYLG” code. The expert system records the
full structure and performance characteristics of the
loop block and the statements within the loop body.
These can then be used during the parallelization
cycle to influence data distribution strategies. The
hotspot loop is a complex loop block containing three
inner loops, one of which has a further level of
nesting. Although there are no dependencies within
the loop block the expert system identifies an
induction, limiting the number of distribution
strategies possible. The expert system determines that
the outer loop is the only one not affected, so
distribution is concentrated on this loop. Parallel
profiling within the improvement cycle provides
information with which the expert system determines
the most successful data distribution. This will be the
distribution which provides the best performance
speedup between the sequential and parallel versions
of the code. The improvement cycle determines the
best distribution, which splits the loop over 4
processors using a COLUMN partitioning scheme. A
speedup is obtained:

 The current best performance has
 been achieved as a result
 of the previous advice. This
 strategy is now stored
 The best speedup is now 1.24

The strategy details are stored as this may ultimately
form the final parallelization solution. However,
communication optimization strategies are also
applied in an attempt to further improve the resultant
speedup. The expert system determines that
staggering communication messages between the
slaves results in a further improvement in speedup:

 The current best performance
 has been achieved as a result
 of the previous advice. This
 strategy is now stored
 The best speedup is now 1.25

No further potential improvements are possible, and
the improvement cycle terminates with a speedup of
1.25. This speedup is significant for intensive use of
the package, i.e. when large sets of data are
processed, normally requiring a lengthy processing
period.
 The final step stage in the process is to store this
successful strategy in the knowledge base, along with
the characteristics of the code to which this strategy
was applied. The parallel version of the code is
output and marks the final stage of the parallelization
process.

7 Conclusion
The Fortport system set out to emulate human
expertise for the problem of automatic parallelization
of Fortran code. The steps involved in this process
are separated and each are controlled by a main
decision making expert system. Parallelization
attempts produce both performance results and
information for possible further performance
improvement. The system also learns techniques and
strategies for programs with common identifiable
characteristics.
 The system has been tested for many cases of
common program constructs and algorithms, with
satisfactory performance results. The system has also
been tested using an existing scientific problem; the
mathematical Sylvester algorithm. This case study
has been demonstrated to produce a performance
improvement. Expert user intervention was not
required in attaining the speedup. Therefore the
expert system approach within the Fortport system is
effective in solving the problem of intelligent
automatic parallelization.

References:
[1] J. Hulman, S. Andel, B. Chapman and H. P.

Zima, Intelligent Parallelization within the
Vienna Fortran Compilation system,
Proceedings of the Fourth Workshop on
Compilers for Parallel Computers, 1993, pp
455-467

[2] B. Chapman, T. Fahringer and H. Zima,
Automatic support for data distribution on

distributed memory multiprocessor systems,
in U. Banerjee et al. Eds. Proceedings of the
6th Workshop in Language and Compilers
for Parallel Computing, Lecture Notes in
Computer Science, vol 768. New York:
Springer-Verlag pp184-199, 1993

[3] High Performance Fortran Forum, High
Performance Fortran Language
Specification, Version 1.0, Rice University,
Houston, May 1993.

[4] P. F. Leggett, A. T. J. Marsh, S. P. Johnston
and M. Cross, Integrating User Knowledge
with Information from Parallelisation Tools
to Facilitate the Automatic Generation of
Efficient Parallel Fortran Code, Parallel
Computing, vol. 22, pp259 - 288, 1996.

[5] S. Johnston, et. al., The Design and
Evaluation of “CAPTools” - A Computer
Aided Parallelisation Tool-kit, Paper No.
98/IM/39, CMS Press, 1998.

[6] K Decker, J Dvorak and R Rehmann, A
knowledge-based scientific parallel
programming environment, Swiss Scientific
Computing Centre, 1993.

[7] S. Andel, B. M. Chapman and H. P. Zima,
An Expert Advisor for Parallel Programming
Environments and its Realization within the
Framework of the Vienna Fortran
Compilation System, 4th Workshop on
Compilers for Parallel Computers, Delft,
1993.

[8] P. Milligan, P. P. Sage, P. J. P. McMullan
and P. H. Corr. A Knowledge Based
Approach to Parallel Software Engineering.
In, Software Engineering for Parallel and
Distributed Systems, Chapman and Hall,
ISBN 0-412-75640-0, pp 297 - 302, 1996.

[9] P. J. P. McMullan, P. Milligan and P. H.
Corr. Knowledge Assisted Code Generation
and Analysis, Lecture Notes in Computer
Science 1225, Springer Verlag, ISBN 3-540-
62898-3, pp 1030-1031, 1997

[10] P. J. P. McMullan, The Intelligent
Generation and Analysis of Code for
Parallel Platforms, PhD thesis, QUB, 1996.

[11] D. M. Tiernan, Collocation Studies in
Fracture Mechanics and Quantum
Mechanics, Ph.D. Thesis, QUB, 1996.

