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Abstract: - Failure management in processes, equipment or plants acquire more importance in modern industry every
day, as it allows us to minimize unexpected failure risk and guaranties a greater reliability, safety, disposition and
productivity in industry. On the other hand, the integration of different intelligent techniques (such as Artificials
Neural Networks, Fuzzy Logic, Genetic Algorithms, etc.) in a hybrid architecture allows us  to overcome individual
limitations in those techniques. In this paper, an intelligent model is designed for failure management based on
Reliability Centered Maintenance methodology, Fuzzy Logic and Neural Networks. The system allows us to generate
adequate maintenance tasks according to the historical data of the equipment involved.
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1 Introduction
Today, it is common to find industries which adopt
recesive measures oriented to damaged equipment
restauration, abandoning proactive methods oriented to
failure prevention and diagnosis as primary activities
[1]. This occurs due to the lack of understanding as to
how the equipment works, and consequently, as to why
the equipment fails. Tending to the maintenance area
need of introducing proactive methods which ensure a
greater disposition of the plant, Reliability Centered
Maintenance (RCM) methodology  has risen [1]. This
methodology develops structures oriented to the
optimization of prevention maintenance task use.

On the other hand, in recent years, a great number
of hybrid systems based on intelligent techniques, as
decision backups and control processes have been
produced, among others [2]. This systems combine
different intelligent models (Artificial Neural Networks
(NN), Fuzzy Logic (FL), Genetic Algorithms (GA),
etc.) to solve problems. This integration points to
overcoming limitations in each tecnique, through
several combination or fusing mechanisms.

In this paper, we propose an Intelligent Hybrid
System (IHS) for failure management, designed by
modules to allow for the use of different intelligent and
statistic techniques, to generate adequate maintenance
tasks according to the historical data of the equipment
involved in the system.

2 Theoretical Basis
In this section we present some fundamental aspects
about failure management, such as the basic reliability
concepts and the Weibull law, to obtain reliability
curves. Later, some aspects about RCM methodology
are presented. Finally, basic ideas on intelligent
techniques to be used are addressed.

2.1 Failure Management
In most cases, equipment failure are due to inadequate
forms of operation or to a bad maintenance.
Replacement of a defective part does not mean, at all,
eliminating the failure cause. If in any system we pay
little attention to failure symptoms and causes, these
will repeat, originating new equipment stopping and
more expenses. For this reason, it is fundamental to
stablish relations among failures, symptoms and
causes.

In all failure definitions reference is made to two
fundamental concepts which are system or element
working capacity, and the function for which it was
designed. Thus, we will consider a failure or
breakdown as the inability of a system or element to
fulfill its given mission when designed. This definition
involves both serious as well as simple failures, also
called catastrophic and partial, respectively.

2.1.1 Reliability Curves



Reliability is defined as the possibility of an equipment
or component not to fail while it is working, for a
determined period of time, when operated under
reasonable uniform conditions [3].

If enough information can be gathered to define
time distribution of failure ocurrence for a particular
group of equipment, then we can define a failure
density function, also called Reliability Curve, for such
equipment type. This function allows allows us to
know instant failure rate, called λ(t), this being the
interest parameter in the reliability study. As failure
rate is a time function, we can represent through a
curve. Such a parameter indicates the failure number
in equipment or component which are produced in a
working instant t [4].

Certain typical curves are used to describe
equipment reliability, which will be called failure
patterns or reliability curves, and are classified as A,
B, C, D, E and F type according to qualitative
behaviour of λ(t). Such pattern characterization is well
known [5], type A being the pattern that which gathers
all possible failure patterns from an equipment (see
figure 1).

Fig. 1.  Type A Failure Pattern

In the figure, we can observe that an equipment’s
useful life can present three defined periods which are
a function of the failure rate behaviour. These are:
- Start period: Its important characteristic is that the
failures present here are those which occur during the
start, which are also known as “child morbility”
(factory deffect failures).
- Normal operation period: Its most important
characteristic is that failures that occur are aleatory
and are caused by uncontrollable external agents.
- Wear out period: Its most important characteristic is
that failures depend on the time and are caused by the
system or equipment age.

2.1.2 Weibull Distribution
The element to determine an equipment reliability is
failure frequency in time. If enough data can be
gathered to define failure ocurrence in time distribution
for an equipment, then failure rate function can be

determined [6]. If failure rate is gotten as a time
function, a curve is generated called Reliability Curve
or Failure Pattern. The importance of this curve lies in
its use to adequately select preventive maintenance
tasks to be applied [5].

Mathematical expression which describes rate
failure for an equipment life period constitutes its
theoretical life model. Weibull’s life model is
characterized by its modulation flexibility, that allows
its adaptation to any life period. Particularly, using
Weibull’s distribution decreasing failure rates can be
obtained, constant or increasing; allowing for the
description of all failure patterns, except failure pattern
type A, which is constituted by three life periods (start
period, normal operation period, and wear out period).

Failure rate function, according to Weibull’s law, is
defined by the equation (1) (for more detail see [4]):
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where:
V= scale parameter or characteristic life,
B= shape parameter.

In figure 2, typical curves of the failure rate
function for some B values are shown (V=1).

Fig. 2.  Typical curves of Failure Rate Function

Weibull’s parameter obtention, is based in the
knowledge of a series of failures which occur in a
system or equipment (historical data about failure
ocurrence), calculating time between failures (TEFn),
which will be ordered from oldest to most recent (from
n=1,...N). Then for each TEFn failure probability will
be calculated PF(N) and survival probability PS(N),
defined by equations (2) and (3), respectively [6].
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where:
N: is the number that identifies the longest time

between failures.



Theoretical estimation Weibull distribution
parameters (V and B) is obtained by survival function
by the method of the square minimums. So, these
parameters are defined by equations (4) and (5).
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where:
bn=1/Ln( TEFn )

Zn=A/B
A=Ln(Ln(1/yn))
B=Ln( TEFn )

yn=PS(n)

Another important function is the failure probability
distribution F(t), or also called unreliability, which is
an equipment probability of not working for a
determined period of time, under normal operating
conditions. This possibility, according to Weibull’s law
it is defined by  equation (6).
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Failure probability is of great importance since this
probability tends to 1 failure rate will be indicating
maximum failure number an equipment can present
before it stops working. In such a sense, failure rate
meaning is going to be given by failure probability
which is had for that instant in time.

2.2 Reliability Centered Maintenance (RCM)
Maintenance is a key piece in bussiness strategy,
which not only ensures equipment and system life, but
also the continuous flow of productive process and the
quality of the result. RCM methodology develops
strategies based on the basic principal of understanding
equipment functions and failure modes, to determine
maintenance requirements in its operative context,
proposing task types which are technically and
economically possible [5, 7].

Reliability (or failure) pattern determination is a
key element in the RCM methodology and therefore it
is necessary to know it [7]. Its importance is centered
on the fact that if you know the failure pattern which
can associated to an equipment, failure prevention

measures can be taken on time for such equipment.
Reliability criteria according to RCM has to principal
categories of preventive tasks which are: condition
tasks and time tasks [5, 7].
- On-Time tasks: these imply repairing or replacing an
equipment before the specified limit age, regardless of
such an equipment condition for the moment of task
application.
- On-Condition tasks: These tasks involve monitoring
the equipment’s particular physical conditions, which
tendencies warn about the possible appearance of an
equipment failure (potential failures). The application
of these type of tasks allows for actions to prevent real
failures, avoiding their consequences.

2.3 Intelligent Techniques
The intelligent computer area involves a series of
emerging techniques, such as artificial neural
networks, genetic algorithms, fuzzy logic, expert
systems, etc. In this section we make an introduction to
intelligent techniques to be used.

2.3.1 Fuzzy Logic (FL)
This technique is fundamentally based on the fuzzy set
theory proposed by Zadeh, in which elements can
partially be members of a set [8]. Then, the
membership rate of an element to a particular set can
take several values between zero and one., where zero
indicates complete exclusion and one is complete
membership. Thus, in FL declarations such as “the
temperature now is warm” pass through membership
rate evaluation from a given temperature for the
“warm” fuzzy set.

FL uses a group of operators similar to those used
by boolean logic, that is, AND, OR, NOT.
Eventhough, each of the operator’s interpretation is
different. If we suppose two fuzzy sets A and B, case
A AND B=C assigns a given pointed value, the
membership rate to set C, defined as the least of the
membership rates of such a pointed value to fuzzy sets
A and B. Similarly, case A OR B corresponds to the
maximum membership rate between A and B for a
given pointed value.

Given the elements of the fuzzy set and all fuzzy
operators, we can make rulers “IF-THEN” in a form
similar to boolean logic. Eventhough, in FL the
specific conclusion for the THEN portion of a ruler is
based on the truth rate of the IF portion.

FL use is widely promoted in complex situations,
since it is conceptually easy to understand, it is
flexible, tolerates inexact data, it can be mixed with
other tecniques and it is based on natural language.



Among the areas of application were it has been used,
we have: control, pattern recognition, etc.

2.3.2 Neural Networks (NN)
Neurons are nerve cells which constitute the primary
elements of the central nerveous system. In general,
neurons are capable of receiving signals which come
from other neurons, process these signs, generate
nerveous pulses and transmit them to other neurons
through extensions called dendrites [9]. In the human
brain, neurons are interconnected in complex spacial
topologies to form the central nerveous system. Neural
operation can be seen as a process where the cell
executes a sum of signals which arrive through their
dendrites. When this sum is larger than a certain
threshold, the neuron responds transmiting a pulse
through its axon. If the sum is smaller than the
threshold, the neuron is not activated.

An artificial NN is a model designed to emulate
some of the computing capacities of the human brain.
This type of model includes both functional
characteristics as topological configurations in the
brain neurons. Eventhough, what makes a NN
powerful is the interconexion strength among its
neurons, not the neurons themselves. Therefore, the
most important characteristic of neural nets is learning
capacity, defined as the adjustment of its interconexion
pondering.

Neurons, as basic elements of net processing, are
compossed by: a pondered entry adder, an activating
function, and a training or learning ruler. All learning
methods can be grouped in two categories: supervised
learning methods and non-supervised learning methods
[6]. Among the application areas, we have: control,
pattern recognition, etc.

2.3.3 Intelligent Hybrid Systems (IHS)
Humans are beings who can process information from
hybrid sources. Thus,  knowledge used by humans is
due to a genetical information combination and
information acquired through learning. This
combination of different types of knowledge sources
has allowed humans to be succesful in dynamic and
complex enviroments [2].

Human capacity emulation to process from hybrid
knowledge sources, has been the object of much
research. This has led to the use of different intelligent
techniques, which have been developed independently,
because such techniques have prduced encouraging
results in particular tasks, but certain complex
problems could not be solved independently. This is
because each intelligent technique which make it

suitable for certain particular problems and not for
others.

IHS have come as intelligent technique integrating
elements. They integrate skills from each technique to
solve complex problems, not only combining different
intelligent techniques, but also integrating such
techniques to conventional systems (for example, as
data base, etc.). There are different ways of integrating
intelligent techniques: combining its skills, fusing a
technique into the other (for example, fuzzy inference
system using neural networks), or transforming certain
parts of a technique for another (for example, learning
process of a neural network made by a genetic
algorithm).

3 Problem Formulation
In a previous paper [1,10], a failure management
computer model based on RCM and on an intelligent
technique called Fuzzy Classifier System. In this model
knowledge of the equipment failure mode reliability
curve was assumed. Such reliability curves are
associated to the equipment failure pattern, which was
not explicitely known in that paper. To obtain such
reliability curve it is necessary to have the historical
data of the equipment, which must store the times an
equipment has stopped working for a particular cause
[3, 4].

According to the RCM, preventing maintenance
tasks proposition for a particular equipment is
intimately attached to the failure pattern type such an
equipment follows. In this paper an IHS will be
developed which allows for adequate task proposal
from failure patterns, using historical data of
equipmqnt failure. Furthermore, only equipment failure
behavior characteristics will be considered,
constructing and analyzing its failure patterns to define
technically possible maintenance tasks. Associated
expenses to these tasks must be analyzed by another
subsystem, which also contemplates consequences
which could be failure generated (wit its expenses
respectively), so as to determine which of the tasks
proposed by IHS are economically possible [5] (see
figure 3).



Fig. 3.  Failure Management IHS in an Operational
Enviroment

4 Failure Management IHS Design
In this section, failure management IHS modular
design in industrial equipment is shown, which not
only combines different intelligent techniques, but also
conventional calculus systems. The first module is
based on the formal method described in section 2.1.2,
to obtain the Weibull parameters (V and B) which
describe the reliability curve of the equipment. A NN is
used in the second module to identify which failure
pattern type is associated to the equipment  as a
function to A and B values. Finally, the last module is
a fuzzy interference system which selects the most
adequate type of maintenance task technically possible
to apply to the equipment, according to pattern failure
(see figure 4). Intelligent system outputs will be the
maintenance tasks, and the inputs will be equipment
failure times sampled directly from the particular
plant, or provided by someone who knows the
equipment (expert).

Fig. 4. IHS Modular Design for Failure Management.

Below, each of the modules which make up this
design, detailing its behavior, pointing out its inputs
and outputs, as well as interaction between them.

4.1 Reliability Curve Generation Module
This module allows to catch necessary information to
obtain reliability curve or pattern, and its generation
(see figure 5).

Fig. 5. Reliability Curve Generation Macroalgorithm

Input data to this module are the times in which the
equipment has stopped working due to some failure
(historical data). This data is processed by this module,
based on the methodology shown in section 2.1.2,
obtaining as an output, the Weibull parameter values
(V and B), as well as λ(t) for the equipments involved.

4.2 Reliability Curve Treatment Module
Parameter A and B combination to generate a
particular failure pattern is not theoretically stablished
(some criteria obey practical estimation [3,4,6,11]), it
is necessary to make a check up of the generated curve
by Weibull parameters to associate it to any known
failure pattern (see section 2.1.1).

This module consists of a NN which allows to
associate an equipment to value pairs V and B, to a
known failure pattern. NN importance lies in
associating, as accuretly as possible, the λ(t) generated
curve to a known failure pattern, because certain
Weibull pair parameter values do not define to which
pattern the curve belongs to, well. These values are
those found in the rank limits to which each pattern is
associated according to the V and B values which
Weibull’s distribution describes (see section 2.1.2).

The NN used is a multilayer perceptronic net
trained according to a standard propagation algorithm
(see figure 6) [9].

Fig. 6. NN Arquitecture

where:
R= 2 neurons on input layer.
S1=3 neurons on hidden layer.
S2=5 neurons on output layer.

The NN was trained so that the output neuron
which represents the correct pattern has a 1, and in the
rest of the output neurons has a 0. The number of
intermidiate neurons was calculated in the net’s tuning
fase. This NN is trained for experimental data input-
output value pairs at disposition, which involve
different ranges of the values B and V, and the
respective failure pattern they represent.

For it to work, the net receives an input the value
pairs which are obtained in the first module (Weibull’s
parameters V and B). The NN output determines the
failure pattern to which the equipment belongs, and
this output will be the next module input (fuzzy
interference system).



4.3 Maintenance Tasks Definition Module
This module consists of a HIS composed by a set of
generic inference rules, some fuzzy other pointed. Such
rules are based on RCM, to determine technically
possible maintenance task applications, such as On-
Time task (TT) or On-Condition task (CT) [5], so as
to prevent failures in the equipment or in the system
(see figure 7).

Fig. 7.  Maintenance Task Definition Module Design

This module uses the reliability curve (pattern) type
recognized in the previous module, as well as other
inputs such as the λ(t) function (obtained in the first
module), and the last equipment repair Fur, due to a
time task application, which is provided by the persons
in charge of equipment maintenance.

From the λ(t) the minimum, average and maximum
failure number is calculated within that module an
equipment can present in a determined period of time
(x, y, z). This information is necessary to generate
belonging function for the failure number fuzzy
variable NF which represents the number of failures in
an instant in time t. The date of the last repair Fur is
needed to calculate the instant in time in which the
operator wishes to know what action to take in the
equipment, in a present instant in time tpresent.

4.3.1 Module Fuzzy Characterization
Fuzzy variables defined in this module are:

Number of Failures (NF(t)): Represents the number
of failures by time unit produced in an equipment.
Their value is defined λ(t) for a given  instant in time
(λ(tpresent)). Fuzzy sets defined for this variable are
Low, Average, High.

The membership function for this fuzzy variable is
shown in figure 8. Discourse universe is [0 number of
failures, z number of failures] where y is the average
number of failures and z is the maximum number of
failures associated to the equipment.

Fig. 8.  Membership Function for Variable NF(t)

where:
y=z/2
z=λ(tmax); where tmax is the t value such that F(t)=p,
where “p” is the maximum allowed  probability (“p” is
given by the user or expert).

Working On-Time task (RTT): Represents the
urgency of applying a maintenance time task,
according to NF value. Its value is defined according
to what was proposed for RCM. Fuzzy sets defined by
this variable are Low, Average, High.
Working On-Condition Task (RTC): Represents the
urgency of applying a maintenance condition task,
according to NF value. Its value is defined according
to what was proposed by the RCM. Fuzzy sets defined
for this variable are Low, Average, High.

Fuzzy variables RTT, RTC are characterized by the
membership function shown in figure 9, with a
universe of possibility discourse [0, 1] which
represents the measuring scale to take an action in
respect to the maintenance task about time.

Fig. 9. Membership Function for RRT and RTC
Variables

 Other variables such as Pattern and OCT, are not
fuzzy, they indicate a concrete value or action. Pattern
represents the failure pattern type (A, B, C, D, E, F)
and OCT indicates the concrete working On-Condition
task.

4.3.2 Inference Engine
The generical inference engine which constitutes this
module’s heart, which uses the proposed procedure
pattern for RCM, is as follows:



1. If Pattern is (D, E, or F) then OCT (Punctual Rule)
    End If
2. If Pattern is (B or C) then Determine NF (tpresent)

(Punctual Rule)
If <NF(tactual)> then <RTT> or <RTC>
(Fuzzy Rule)
End If

    End If

The Pattern variable is not fuzzy, but works for the
taking of the adequate decision as well as for the
concrete action to apply On-Condition task (OCT)
when the pattern is B or C. On the other hand, the
variables which describe the maintenance task to work
on (RTT and RTC) are fuzzy, as well as the variable
which represents the number of failures for an instant
in a determined instant in time (NF (tpresent)), so as to
estimate a task which should be applied based on the
relationship pattern-failure.

To obtain present time “tpresent” we must take into
consideration the last repair date for the equipment,
which is an external imput to the system. The time
which has run since that last repair time to the instant
in which the monitoring is being carried out (present
time) is the one called “tpresent” (see figure 10).

Fig. 10.  Present Time Representation

4.4.3 Generical Fuzzy Rule Instances
Generical instances are based on the relationship given
between NF and RTT or RTC. When the failure
number are average or high, we should apply On-Time
task,since the failures there increase in long term with
time. On the other hand, when failures are low it is
better to apply On-Condition task. Below we describe
such relationships (instances) in respect to the
generical fuzzy rule we have (see table 1):

      If <NF(t)> then <RTT or RTC>
NF(t) RTT RTC

L A H L A H L A H

X X X
X X X

X X X
     Table 1. Generical Fuzzy Rule Instances

5 Application Example
Next  an application example is presented which shows
IHS at work. This system prototype was developed in
MatLab® [8, 12].

Entry information to the system is the historical
data on failure ocurrence in two different equipments
(see table 2). You must be aware that in this case no
information about which part of the equipment failed
was registered for those given times. These data was
generated in an aleatory manner, that is, it does not
belong to any real practical case.

Failure time for
equipment #1

Failure time for
equipment # 2

590 1000
700 1920
800 2390
850 3001
900 3812

1987 5025
3567 5712
3723 5951
4563 6297
8076 6793
9887 6998

7810
8462
8899
9400

Table 2. Input Data to the Reliability Curve
Generating Module

From these data, parameters which characterize
Weibull distribution were workwed out (B and V)
using the equations described in section 2.1.2 results
are shown on table 2.

Equipment #1 Equipment #2
B V B V

0.6669 792.7518 2.0644 719.8793

Table 2. V and B values, obtained from Reliability
Curve Generation Module.



Next, the module shows function λ(t) for each
equipment, obtained through simulation (see figure
11). V and B values will be entry data to the second
module, to be processed by the neural network and
assign the equipments associated failure patterns. The
results are shown in figure 11.

Fig. 11. Results Shown by the Reliability Curve
Treatment Module.

Next, inputs to the third module are function λ(t)
(obtained from the first module), the last repair time
Fur (given by the user) and pattern type (recognized in
the second module). From this information
maintenance task to be applied for failure prevention in
the equipents are determined.

This module also shows as an output the
equipment’s reliability curve showing the maximum
time allowed tmax which you can wait before working
On-Time task (time estimated in which the equipment
will not fail). On this curve present time tpresent is also
shown (time in which the equipment is being studied).
This curve presentation will not allow the expert to
miss life time left the equipment from present time.

Next results obtained for an equipment with certain
V and B values are presented.

Input:
• B=2.608 and V=642.822
• Pattern=C
• Fur=1999 1 21 (year, month, day)

 
The determination module of maintenance tasks
presents the output shown in figure 12.

Fig. 12. IHS Output

The result presented by the system shows the state
of an equipment or group of equipments for a
determined moment tpresent, indicating to the user the
maintenance task type he must apply according to the
reliability characteristics of the equipment and the time
since the last repair. In this example, the system
suggests working On-Time task with the most urgency
(63%) which associates an On-Condition task (36%),
eventhough, final decision is the operator’s, guided by
the present state of the equipment shown as an IHS
output (see figure 12).

6 Conclusions
IHS for control and failure management in this paper,
exhibits a great potential to solve the most important
problems in the maintenance area, as are reliabilty
curve estimation for equipments and adequate
maintenance tasks proposed. Each IHS module uses
the best tool to implement its function. Tests carried
out on this system showed the neural network reaches a
90% failure pattern recognition rate.

Theoretical basis on which Weibull parameter
generation module is based is such that, it allows IHS
application not only for equipment reliability studies,
but in plants. IHS integration into a more complex
system allows to know the plant state and associate it
to the equipments and their components. In this global
application, IHS will estimate Weibull’s parameters
for the plant, for the equipments associated to it and
for their components, having the equipments and their
components historical data as an input. This way, IHS
allows to have a global vision of the plant reliability
and, in consequence, determine adequate maintenance
tasks to prevent failures.
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