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Abstract: - This paper outlines a fuzzy extension of the Petri Box Calculus (a process algebra with Petri

net semantics) and its application to modelling of automated manufacturing systems. Two aspects are
considered as subject to fuzzi�cation: involvement level of argument nets' in the scope of a composition

operator, and inter-dependencies of values assigned to tokens. Corresponding to these aspects, the intro-
duced fuzzy-based features enable a exible representation as well as uncertainty treatment in describing
and analysing, �rst, system con�guration and operation sequences, second, material and control ows

between components.
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1 Introduction

Automated manufacturing systems [14] are a stan-

dard example of a general class of discrete-event
systems (DES) [16]. In modelling, speci�cation,
and analysis of DES such means as process al-

gebras (PA's) [11] and Petri nets (PN's) [12] are
e�ectively used as primary means [1, 13] or se-

mantical models for other techniques [7, 10].

Both PN's and PA's possess features which make
them superior, in certain respects, to each other

(e.g., in PA's: compositionality and association
with logics, and in PN's: e�ective treatment
of true concurrency issues, natural graphical de-

scription). Aimed at utilizing the advantages of
both means, various combined models have been

developed, in particular the Petri Box Calculus
(PBC)[3]. In the PBC, a PN is associated with

each algebraic expression, and manipulating by
expressions unambiguously implies corresponding

net transformations. The approach proved to be
e�ective both for theoretical and practical appli-

cations, and has given rise to a special tool [2].

The current PBC uses crisp descriptions. It ca-

pabilities can further be extended by introducing
means for handling uncertainty [17, 18], very fre-

quent in real DES. In the context of DES control
[15], an idea of fuzzy synchronisation has origi-

nally been proposed in [9]. Now we develop a gen-
eral fuzzy-based extension of the PBC framework.

There are no principal obstacles to applying PBC
connectives to fuzzy PN's [6]. Challenging and

promising, however, remains a fuzzy treatment of
the composition operators themselves (i.e. how

the nets are composed, rather then which kind of

nets is used) and of the way the system dynamics
is analysed in this case. These are the issues on

which this paper concentrates.

We proceed as follows. Section 2 motivates the
problem statement. In section 3, some basic no-

tions are presented, and the idea of the proposed
approach is sketched. Then, fuzzy extensions
of PBC composition operators are de�ned (sec-

tion 4), and a type construction operator, ad-
justable via a fuzzy parameter set, is introduced

(section 5). Explanations are accompanied by
application-oriented examples.



2 Problem Description

Fuzzifying the compositions of components. A de-

scription of a system con�guration or a process
plan may require, besides statements like "y al-
ways precedes z", also ones of that kind "prefer-

ably, y preceeds z", whereby an alternative is not
excluded. In �g. 1: the overall direction of the

part ow is from C1 to C3. Operation b requires
completing a beforehand, whereas the completion

of c before b may be desired (e.g. for the rea-
son of joint transportation of the outputs) but not

obligatory; as for operation d, it can be performed
only after the completion of the others { a, b, and

c. The above situation implies the possibility of
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Figure 1: Motivating fuzzy ordering of operations

di�erent levels of involvement of arguments into
the scope of a composition operator. To enable
treatment of the above situation in a PN-based

description of a system is the �rst goal of this pa-
per.

Fuzzifying the dependencies of ow elements.

Even performing a crisp composition of two nets,
one may still have to be able to di�erently handle

the token ow between the component nets. This
may be the case, for example, if the general part
ow is always from workcell C1 to C2 (i.e. C1 and

C2 are combined via a crisp sequence operator,
�g. 2), however the ow discipline depends on
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Figure 2: Independent and mutually dependent

ows

parts: some of them have to wait for other parts
processed on C1 because these parts are used

together in C2 (it is a so-called strong discipline;

this is the case with parts 2 and 3), while other
parts need not wait and can proceed to C2 just

after C1, which is a so-called weak discipline; it
is valid w.r.t. part 1. A fuzzy extension of the

weakness notion w.r.t. composition operators
was introduced in [9]. The second goal of the

present paper is a formalization of uncertainty
treatment of the "weak versus strong"{aspect

in the token ow. (Notice the di�erence w.r.t.
the �rst goal: now we operate on the level of
token ow between already "cripsly" combined

nets, while the �rst goal deals with fuzzifying the
notion of net compositions).

3 Basic Notions and Approach

Outline

3.1 Notation

If X is a (crisp) set then a fuzzy set A in X is a
set of ordered pairs A=f(x; �A(x)) j x2Xg, where

�A(x)2[0; 1] is the membership grade of x in A.
The sets A�=fx j x2X ^�A(x)��g and Ae�=fx j
x2X^�A(x)>�g are called the �-cut ofX and the
strong �-cut of X , respectively. Set fxj�A(x)>0g
is called the support of A. The set of all fuzzy sets

in X is denoted by F(X). IN denotes the set of
natural numbers. A multiset over a crisp set X is

a function M : X ! IN.

3.2 M-nets and Petri Box Calculus

Petri nets. A PN consists of places and transi-

tions, connected by arcs. A system state is repre-
sented in a PN by the distribution of tokens over

the places; system dynamics is modelled by chang-
ing this distribution via transition �rings: when
�red, a transition consumes certain tokens from

its input places and delivers tokens in its output
places. For modelling complex and large-scale sys-

tems, high-level PN's [8] are used, in which the
places, transitions, arcs and tokens are assigned

with additional attributes.

M-nets.M-nets [4] are a representative of the high-
levels PN's. In this paper, a relational form of M-
nets representation is used (for a formal de�nition

refer to [5]). The set of all M-nets is denoted by
NM .



An M-net is a tuple (S; T; �), where S and T

are the sets of places and transitions, respectively
(S\T=;), and � is the inscription function which

assigns special attributes to places, transitions,
and their pairs (arcs). To each s2S, function �

assigns a status { e, x, or i (which means, respec-
tively: input, output, or internal), and a type {

�(s), which speci�es the tokens (values) allowed
on s; a type is a subset of the set VAL of all pos-

sible values; v will be used as a generic name for
values. For simplicity, we will identify VAL with
IN. With each t2T , � associates a label (an element

of the action set Act), and a type �(t), which spec-
i�es the modes in which t can �re; a generic nota-

tion for a mode is m. Each arc is assigned with a
multiset of elements of the kind (v;m) or (m; v),

depending on the arc's direction. These multisets
determine when and how the transitions �re.

Example 3.1 In �g. 3(a), the status of s1 is e

and the type is f1; 2g; the label of t is a and its

modes are m1 and m2. The inscription �((s1; t))

of the arc between s1 and t is a multiset contain-

ing two occurrences of (1; m1) and one occurrence

of (2; m2). Place s1 contains three tokens, symbol-

ically represented by circles with numbers (values)

1 and 2 inside. Transition t can �re in two modes,
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Figure 3: Transition �ring in an M-net

m1 and m2. The precondition of �ring in modem1

is the presence of at least two 1-tokens in place s1
and one 3-token in place s2. Firing of t results

in removing exactly two 1-tokens from s1 and one

3-token from s2, and delivering one 4-token into

s3 (�g. 3(b)). Fig. 3(c) shows the outcome of the

subsequent (i.e. starting in the net in �gure (b))

�ring of t in the mode m2. 3.1

Petri Box Calculus. Due to space limits, we con-

sider an abridged version of the PBC: only op-
erators of parallel (k), sequential (;), choice ( )
composition, as well as a synchronisation opera-

tor sy 1. The syntax of (simpli�ed) Petri Box
expressions is de�ned by:

E ::= " j EkE j E;E j E E j E sy Q;

where " is a basic action (it corresponds to an

elementary "place-transition-place" net as one of
those four fragments of net N1 in �g. 4(a)), and

Q�Act.

In (a high level net-version of) the PBC, each ex-
pression is in a one-to-one correspondence to some

M-net. On the semantical level, application of
composition operators is performed via combin-
ing entry and exit places of the argument nets

in a special way, usually a cartesian product{like
(�g. 4).

N1 N2 N1 N2;
x

x e

e

(a) (b)

Figure 4: Combining interface places under se-
quential composition of N1 and N2

3.3 Approach outline

Relation of PBC operators to a real system.

PBC operators have their natural counter-
parts in the primitives by which the mate-

rial/information/control ows in a manufacturing
system are con�gured (�g. 5): (a) independent
operations can be described as parallel (composed

via k), (b) if a precedes b, this corresponds to
their sequential composition ( ; ), (c) availability

of alternative resources (e.g. if an operation can
be performed on either of machines a and b)

1For simplicity, we use a synchronisation operator which
di�ers from that in [3]: it synchronises the actions of the

same name (rather then those with conjugate names), and

assumes an embedded elimination of the participating tran-
sitions.



is represented by the choice operator ( ), (d)

synchronisation sy corresponds to joint activity
of machines: e.g., loading (denoted by a) of an

automated quided vehicle by a robot requires
simultaneous participation of both the vehicle

and the robot.
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Figure 5: Relation between structural character-

istics of a system and basic compositions in the
Petri Box Calculus

Problem solution outline To achieve the �rst goal

(see section 2), we introduce fuzzy extensions of
the above operators. Binary fuzzy compositions
operate on fuzzy sets of nets: given a pair of

such sets, a composition yields a fuzzy set of nets,
whose elements are crisp compositions of elements

from the supports of the argument sets. A fuzzy
set of nets encompasses possible situations hidden

behind uncertain statements. For example, the
situation with workcells C1 and C2 from �g. 1, can

be handled via a fuzzy description of how much c
(which is a constituent of C1) is impacted by the

ordering "C2 after C1". In �g. 6, this is repre-
sented by fuzzy set �1, which contains two nets:
the �rst one (with membership 0:7) assumes inde-

pendency of c, and the second one (with member-
ship 0:3) induces the completion of both actions,

a and c, in workcell C1 before starting C2.

The second goal, i.e. treatment of di�erent

levels of mutual dependency of components in
inter-module information and material ows, is

achieved via introducing a fuzzy type construc-
tion operator. This operator is parameterised by a

fuzzy set which contains independent values; these
values remain unchanged (as a consequence, so
do the corresponding coe�cients in arc inscrip-

tions), hence, freely proceed through new com-
bined places; dependent values become tied to the

others, and thus must wait for their arrival. Fuzzi-
ness of the parameter set results in the possibility

of di�erent treatment of the same token and thus
in the multifariousness of the represented ow dis-

ciplines.

4 Fuzzy Composition Operators

We give a generic de�nition which encompasses
fuzzy versions of each of operators k, ; , and .
Let � be a generic notation for a composition oper-

ator, and
F
� denote a corresponding fuzzy version.

De�nition 4.1 (Generic fuzzy composition)

Let �1;�2 2 F(NM). Then �1

F
� �2 = f(N; �) j

�=maxfminf��1
(N1); ��2

(N2)g j N1 �N2=Ng.
4.1

Example 4.2 Figure 6 shows an example of a

PN-representation of compositions from �g. 1: �1
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sets of nets



represents a fuzzy set of nets which corresponds to

fuzzy sequence of the �rst two centers C1 and C2;

�2 is a set corresponding to C3; �3 represents the

outcome of sequential composition of �1 and �2,

which relates to the whole situation in �g. 1.

4.2

In fuzzy synchronisation operator
F

sy , fuzziness
relates to the description of which actions (rep-

resented in PN's by transitions) really have to be
performed in a joint manner (i.e. are inuenced

by the crisp operator sy ):

De�nition 4.3 (Fuzzy synchronisation of tran-

sitions) Let A2F(Act), 	2F(NM). Then

	
F

sy A = f(N; �) j �=maxfminf�; �	(N
0)g j

N 0 sy A�=Ngg. 4.3

Example 4.4 Let 	=f(N; 1:0)g, where N

is as in �g. 7(a), and A=f(a; 0:7); (b; 0:2)g.

Then 	
F

sy A = f(N1; 0:7); (N2; 0:2)g, where

N1=N sy A0:7 (�g. 7(b)) and N2=N sy A0:2

(�g. 7(c)) 4.4
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Figure 7: Illustrating transition synchronisation

5 Fuzzy type construction

Basic type construction. We present a fuzzy ex-

tension of the type construction operator ./
 

pro-

posed in [5]. Operator ./
 

discriminates between

independent (weak) and dependent (strong) val-

ues for the type of a new place resulting from in-
terface places of the to-be-composed nets. Type

construction is parameterised by set  , which con-

tains the weak values. By varying  , one can
adjust the level of mutual dependency of values.

Fig. 8 illustrates the underlying idea: if place s3
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Figure 8: Origin of a new type

results as a combination of places s1 and s2, then
the type of s3 is de�ned as follows: the weak part
is the intersection of the weak parts of the types of

s1 and s2 (shadow area; value 1); the strong part
is produced by taking all pair-wise combinations

of the strong values from the contributing types
(e.g. 7 results from 2 in �(s1) and 5 in �(s2)). (For

transparency, in the following we denote each new
value by a combination of the contributing values:

e.g. 23 in �g. 9(b) is resulted as a combination of
2 from �(s1) and 3 from �(s2), �g. 9(a).)

Coe�cients related to new values in the annota-
tions of the arcs adjacent to new places are in-

herited as those related to the corresponding con-
tributing values (�g. 9).

s1 s2

,m+(,( )1 )23m1 12

t2

t2
21 (   ,m  ) 23 3+   (     , m  )5

s3t1

t1
+   (   ,m  )3 35(   ,m  )1 2

{1, 2} {1, 3}

(a)

(b)

x e

, )m+(,( )1 22 m1 1

{1, 23}

Figure 9: Illustrating arc inscriptions: (a) before
and (b) after sequential composition

Fuzzy type construction. A fuzzy extension
F

./
D

of operator ./
 

is based on a fuzzy description

(D) of the parameter set. We present two ap-
proaches to fuzzy type creation: the �rst one (def-
inition 5.1) treats new types as fuzzy sets of crisp

types, according to the second approach (de�ni-
tion 5.3), a new type itself is a fuzzy set of val-



ues. A relation between the two approaches fol-

lows from equation 1.

De�nition 5.1 (Fuzzy type construction{I)2

Let D2F(VAL), �1; �2�VAL. Then

F1

./
D
(�1; �2)=f(�; �) j �=maxf�j ./

D�

(�1; �2)=�g.

5.1

Note that in a fuzzy set obtained according to the
above operator, any two di�erent elements (which

are crisp types) with a nonzero membership grade
have di�erent membership grades.

Example 5.2 Let s1 and s2 are combined

into s3. Let �(s1)=f1; 2; 3g, �(s2)=f1; 2; 4g,
and D=f(1; 0:9); (2; 0:3)g. Then D0:3=f1; 2g,

D0:9=f1g. Further,

./
D0:3

(�(s3); �(s4))=f1; 2; 34g (=�0) and

./
D0:9

(�(s3); �(s4))=f1; 22; 24; 32; 34g (=�00).

Finally,
F1

./
D
(�(s3); �(s4)) = f(�0; 0:3); (�00; 0:9)g

=f(f1; 2; 34g; 0:3); (f1; 22; 24; 32; 34g; 0:9)g. 5.2

De�nition 5.3 (Fuzzy type construction{II)

Let D2F(VAL), �1; �2�VAL. Then

F2

./
D
(�1; �2)=	, where 	2F(VAL) is obtained

via injection  : VAL�VAL!F(VAL) such that

8(v1; v2)2�1 � �2 :

((v1; v2))=

8>><
>>:
(v;maxf�D(v); 1��D(v)g);

if v1=v2=v;
(v;minf(1� �D(v1)); (1��D(v2))g);

v2VALn(�1[�2); if v1 6=v2:
5.3

Example 5.4 For the same initial data as in

example 5.2, we get:
F2

./
D
(�(s3); �(s4))=f(1; 0:9);

2We assume that the new places obtain internal status,
which prevents them from further participation in compo-

sitions, which allows us to assume that the types of the

interface places are crisp, and thus simplify the notation.
In the general case, de�nitions 5.1 and 5.3 can easily be

extended to fuzzy type construction from fuzzy argument

types, in a way analogous to the treatment of fuzzy sets of
nets in de�nitions 4.1, 4.3.

(2; 0:3); (12; 0:1); (14; 0:1); (24; 0:7); (32; 0:7);

(34; 0:7)g, where the membership grade

of, e.g., element 12 is determined as

minf1��D(1); 1��D(2)g=minf1�0:9; 1�0:3g=0:1.
5.4

The behaviour of a system modeled by a PN N

can be characterised by the set �(N) of possible
�ring sequences in N . If N is an outcome of some

net composition, with fuzzy type construction ap-
plied therein, then the behaviour of N is analysed

for individual crisp types which comprise the sup-

port of the (fuzzy) outcome of
F1

./
D

, or for �xed

crisp types which correspond to �-cuts of the fuzzy

types resulted from
F2

./
D

.

Let 	 be a result of
F1

./
D

. Let N�(
F1

./
D

) corre-

spond to N where instead of 	 a crisp type � was

used such that �	(�)=minf�	(�
0) j �	(�

0)>�g.

Analogously, N�(
F2

./
D

) corresponds to N where

fuzzy types, resulted from
F2

./
D

, are substituted

with their �-cuts. Let N( ./
 

) denote the same

net N where instead of fuzzy operator
F

./
D

, basic

operator ./
 

was used. Let  = ./
Dg(1��) . Then

the following holds:

�(N( ./
 

))=�(N�(
F1

./
D

))=�(N�(
F2

./
D

)) (1)

In the above equation, the nets underlying the �rst

two components are the same, while the one whose
�ring sequences are represented by the third com-
ponent, has di�erent type(s) and incidences.

Conclusions

With the intention to treat uncertainty
in modelling and analysing of mate-
rial/information/control ows in automated

manufacturing, we introduced a fuzzy extension
of the Petri Box Calculus. The proposed means



enable one to represent and treat di�erent levels

of involvement of system components, represented
by Petri nets, into the scope of composition oper-

ators which comprise system's speci�cation, and
to analyze system's behaviour in the scope of a

corresponding fuzzy description. Further research
will include, in particular, fuzzy treatment of

the re�nement in high-level Petri nets, and the
development of application-oriented techniques

for maintaining tractable fuzzy descriptions in
compositional modelling of systems.
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