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Abstract: - An application of Nonmonotonic Connectionist Expert Systems (NCESs) in mining clas-
si�cation rules from large relational databases is presented. NCESs are hybrid learning systems that
can acquire symbolic knowledge of a nonmonotonic domain, represented using nonmonotonic inheritance
networks. This initial knowledge can be re�ned using connectionist learning techniques and a set of
classi�ed examples. Finally, the re�ned knowledge can be extracted from the connectionist network and
fed back in the initial nonmonotonic inheritance network. On the other hand, data mining techniques are
used to extract knowledge, in the form of relationships and patterns, from large databases. Data mining
techniques, usually, incorporate symbolic learning algorithms that are capable of discovering classi�ca-
tion rules from database records that are considered as training examples. In most of the cases, a set of
classi�cation rules describes a class through de�ning a general pattern with exceptions. Once an initial
set of such classi�cation rules is known, NCESs can be used in order to re�ne this set and discover new
subtleties.
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1 Introduction

Recently, a great attention has been paid in ex-

tracting knowledge from large relational databases,

either business or scienti�c ones. Actually, this

need is imposed by the explosive growth of such

databases and the huge volume of data stored in

them. A lot of techniques have been proposed

in the literature for such data mining process [6].

There are di�erent kinds of knowledge rules that

can be extracted from a database. Usually, classi-

�cation rules are of the most common ones. Clas-

si�cation rules can be extracted using supervised

learning methods and can be used to classify data

into prede�ned classes, described by a set of con-

cepts (attributes). In most of the cases, a set of

classi�cation rules describes a class through de�n-

ing a general pattern with exceptions. A subset of

these rules de�ne the general pattern (e.g. \young

loan applicants are of a high risk"), while the rest

de�ne the exceptions (e.g. \young loan applicants

with high income are of low risk"). This consider-

ation of general pattern and exceptions is indepen-

dent from the representation scheme of the classi�-

cation rule (e.g. \if-then" rules and decision trees).

On the other hand, exceptions introduce non-

monotonicity in a reasoning process. Nonmono-

tonic reasoning is an important feature of systems

that try to mimic common sense reasoning. A lot

of di�erent formalisms are proposed, in the liter-

ature, that are capable of representing knowledge

with exceptions (e.g. [2, 7, 12, 13]).

Nonmonotonic Connectionist Expert Systems,

NCESs, [3], are hybrid systems combining connec-

tionist learning techniques with symbolic nonmono-

tonic knowledge representation schemes. A great

attention has been paid, recently, to the develop-

ment of hybrid systems that use Connectionist Net-

works as example based learning systems and propo-

sitional rules as knowledge representation scheme

for the domain knowledge [1, 17]. NCESs use in-

heritance networks, as a nonmonotonic multiple in-

heritance knowledge representation scheme for the

domain knowledge, and connectionist networks, as

a leaning mechanism. The latter is used in order to
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re�ne the initial domain knowledge using connec-

tionist learning techniques and a set of classi�ed

examples. The re�ned knowledge can be extracted

from the connectionist network and fed back in a

revised nonmonotonic inheritance network.

Therefore, if some initial rules, representing gen-

eral patterns are known, they can be considered,

along with their possible exceptions, as a domain

knowledge of an NCES. During a re�nement phase

the initial knowledge is revised using the database

records as training examples. The re�ned knowl-

edge is extracted and fed back to an inheritance

network that reveals the correct exceptions. Since

initial general patterns can reect the experience

of an expert, the whole process is an expert-guided

data mining technique.

In the rest of the paper we �rst describe briey

NCESs and then we propose a new data mining

methodology. The latter is presenting in conjunc-

tion with the knowledge extraction phase of NCESs.

2 Nonmonotonic Connectionist

Expert Systems-NCESs
NCESs possess a domain knowledge represented by

a nonmonotonic inheritance network. Nonmono-

tonic Inheritance Networks (NINs) is a nonmono-

tonic multiple inheritance scheme allowing excep-

tions in the inheritance [16]. Knowledge is repre-

sented by attaching to each node of a direct acyclic

graph a label that denotes an object, a class of ob-

jects or a property possessed by objects of the do-

main of discourse and by establishing the desired

relationships through the insertion of the proper

directed edges. If an exception exists in the inher-

itance, this is indicated by an exception link.

The domain knowledge of NCESs is used for

the initialization of a connectionist network that is

used as an example-based learning mechanism in

order to re�ne the initial knowledge through pro-

cessing a set of classi�ed examples. After the re�ne-

ment, the acquired knowledge is extracted substi-

tuting the initial domain knowledge. At this state,

a new cycle of knowledge initialization-re�nement-

extraction can start, whenever a new set of exam-

ples need to be considered (see Fig. 1).

The goal of the knowledge initialization phase is

to construct a connectionist network that provides

the same answers with the nonmonotonic inheri-

tance network that represents the domain knowl-

edge. The constructed connectionist network is

trained using a set of classi�ed examples, in or-

der to re�ne the initial knowledge. The latter is

achieved through changing the initial weights. Fi-

nally, the re�ned knowledge is extracted from the

connectionist network and is represented by a re-

vised nonmonotonic inheritance network, which re-

places the initial one.
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Figure 1: The cycle of knowledge initialization, re-

�nement and extraction

2.1 The knowledge initialization phase

The goal of the knowledge initialization phase is

formally de�ned as:

Given: a direct acyclic graph G(V;E = R
S
POSS

NEG) with V the set of nodes that represent

objects of the domain of discourse and E the set

of edges that represent relations between those ob-

jects, where the set R consist of the edges that rep-

resent ordinary relations, the set POS consists of

the edges that represent exceptional positive rela-

tions, the set NEG consists of the edges that repre-

sent exceptional negative relations and R
T
POS

T
NEG = ;.

Initialize a connectionist network N, with:

(cell inputs and activations are discrete)

� a set of cells U = fu1; : : : ; ukg, each one of

which receives a network binary input ([0; 1])

and gives a network binary output ([�1; 1]).

Moreover, each cell ui performs an operation

S, to be described later, on its inputs.

� a set of integer weights W = fwi;j ji; j � kg,

� a proper activation function � applied to the

network outputs.

The initialization of a connectionist network utiliz-

ing symbolic knowledge with exceptions, requires

the simulation of the canceling of inheritance repre-

sented by the negative links (denoted by a dot line).
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Exception links that represent exceptions in the in-

heritance of properties, take precedence over the

normal links that represent inheritance from the

more general classes to more speci�c ones. There

is also an ordering of the exception links according

to how speci�c the class they refer to is. The more

speci�c is the referring class the higher priority has

the exception link.

F

E

G

D

C

u7

u6

u5

u4

u3

w5,4=1

w4,3=1

w3,2=1

w2,1=1

w6,4=-6

w6,2=6

B

A

u2u2

u1

w6,5=1

w7,6=1

w7,5=7

w7,1=-7

w5,3=5

w5,2=5

Figure 2: Assigning negative or positive weights ac-

cording to a topological ordering

To properly initialize the connectionist network

we have to preserve this \inferential distance order-

ing" [16]. To this end, we de�ned a cell operation S

as the computation of the maximum absolute value

of the inputs of the cell. Thus,

8ui; Si(in1; : : : ; inm) := in1 ] in2 ] � � � ] inm;

where ] is a binary operator de�ned as:

x ] y =
x� "+ y

jx� "+ yj
�
j jxj � jyj j+ jxj+ jyj

2
;

in1; : : : ; inm are the inputs of cell ui and 8uj that

are connected to ui, inj is derived by the function

inj =

�
0; if Sj = 0;

wi;j ] Sj ; if Sj 6= 0.

Intuitively, the cell operation S guarantees that the

output of a cell is identical to its input with the

maximum absolute value. In the case where there

are more than one inputs of equal absolute value,

the output is identical to the negative input. This is

achieved by subtracting a very small positive num-

ber " from someone of the inputs determining the

resolution of distinguishing x and y.

More speci�cally, we assign to a negative or a

positive link a negative or a positive weight, respec-

tively, with a magnitude relative to a topological

ordering of the cells. According to a topological

ordering, there is a function f : U ! IN that as-

signs to each cell an integer, such that if cell ui is an

ancestor of cell uj (in the sense that there exists a

connection path from ui to uj), then f(ui) < f(uj).

The above methodology [3] is applied to the exam-

ple of Fig. 2.

2.2 The knowledge re�nement method

The knowledge re�nement is based on the train-

ing of the corresponding connectionist network us-

ing a set of training examples. At the same time,

knowledge re�nement aims to an e�ective knowl-

edge extraction. To this end we need a training

method that preserves the symbolic meaning of the

initialized connectionist network. In our case, this

is accomplished by restricting the changing of the

weights to selected ones and by using a �xed archi-

tecture.

This method can be applied to selected weights

in order to minimize the corresponding error func-

tion E without utilizing the gradient of E. In our

case the error function is de�ned by

E =
PC

i=1

h
�(NOUTi)� (2DOUTi � 1)

i2
;

where � is a discrete activation function [8], C

refers to the number of cells that corresponds to

the semantically related input cells, NOUTi is the

output of the ith cell and DOUTi is its correspond-

ing desired output. Notice that C is much less than

the total number of cells of the network.

The proposed training method is applied by

changing selected weights at each epoch, which is

very useful in our approach. It is based on a re-

cently proposed optimization method [18] and it

can be applied to imprecise problems since the only

computational information required by it is the al-

gebraic sign of E.

3 General patterns and their ex-

ceptions in classi�cation rules
A set of classi�cation rules is actually a discretiza-

tion of a continuous domain into classes. Most

often, such a discretization is established in dif-

ferent levels of generalization. More generalized

3



levels concern discretization into general classes,

while less generalized levels concern discretization

into classes that are speci�cations of the general

classes. We can consider these speci�cations as be-

ing introduced by exceptions to general patterns

(notice the example in the introduction). This no-

tion of general patterns and their exceptions can be

considered in all of the most known representation

schemes for classi�cation rules.

Firstly, consider Decision Lists [11] as a propo-

sitional-like representation scheme that is used in

some of the most e�ective data mining algorithms

(e.g. [4]). Decision Lists representation scheme is

actually an ordered set of \if-then" rules. The an-

tecedents of the rules is a conjunction of conditions

and the consequent is a class. Thus, every rule rep-

resents a description of a class. Actually, a class

description consists of a set of such rules. This set

describes a class through de�ning a general pattern

(a rule) with exceptions (additional rules). Excep-

tions correspond to the early rules in the Decision

List, while general patterns correspond to the later

ones. Thus, the notion of general patterns and their

exceptions is obvious in decision lists.

Young employees of government companies, residents of
Aegean Islands are bad customers

Entropy = 1.36
Significance = 10

Employees of government companies are bad customers
Entropy = 1.45
Significance = 60

Young customers are good customers
Entropy = 1.53
Significance = 20

Residents of Aegean Islands are common customers
Entropy = 2.09
Significance = 40

Figure 3: A sample of a Decision List

A sample of rules of a Decision List is shown in

Fig. 3. These rules are constructed by the CN2 al-

gorithm and describe the behavior of the customer

base of a big telecommunications company1. The

conditions of the rules are certain attributes of the

customer base and the prede�ned classes denote a

pro�t related behavior. The last three rules de�ne

general patterns while the �rst one is an exception

to the last two rules.

Data mining algorithms construct classi�cation

rules along with a measure of interestingness for

each rule. This measure is evaluated through a

quality function that guides the search process and

1The classes in the rules are shown changed, with respect

to their actual values, for safety reasons

guarantees that the most interesting rules will be

chosen from the search space. For instance, CN2

data mining algorithm [4] uses a pair of measures

in order to represent the quality of a rule: entropy,

an information theoretic measure, and signi�cance,

a statistical measure. The �rst refers to the accu-

racy of the rule in predicting a class, with respect

to the training set (the lower the entropy, the bet-

ter the accuracy). The latter guarantees that this

accuracy is not obtained due to randomness (higher

signi�cance corresponds to less possibility that the

accuracy is not obtained due to randomness). The

entropy of the last two rules is high enough; so we

can conclude that there exist a lot of exceptions

to the general patterns. Actually, there exist more

exceptions to the last rule. On the other hand,

the signi�cance of all the rules guarantees that the

rules are not obtained due to randomness.

Another representation scheme is the Inductive

Logic Program (ILP). ILP is a First Order Logic

(FOL)-like representation scheme with more ex-

pressive power than propositional-like representa-

tions. De�nitions of the classes are represented by

formulae of FOL. Although FOL formulae does di-

rectly support representation of exceptions, we can

identify the notion of general patterns and their ex-

ceptions in ILP. Actually, there exist certain ILP

systems that support such a nonmonotonic setting

(e.g. [10]). In these cases, general patterns can

be identi�ed in formulae-rules with more than one

class in the conclusion, while formulae-rules with

only one class in the conclusion can be identi�ed

as exceptions to general patterns.

A sample of rules generated by the ILP system

CLAUDIEN [10] is shown in the following:

� b1a(X)
W
b1b(X)  perlodidae(X,A)

� b1a(X)  perlodidae(X,A),rhyacophilidae(X,B)

The rules concern the biological classi�cation

of river water quality through monitoring the ex-

istence of special organisms, the benthic macro-

invertebrates. The predicates b1a(X) and b1b(X)

represent classes of water quality of the sample X

and the predicates of the form family(X,A) rep-

resent the existence of family in sample X at the

abundance level A. The whole set of rules consists

of 79 rules and only 28 involve the presence of a

single conclusion like the last rule [5]. General pat-

terns that can be identi�ed are \Perlodidae family

at abundance level A denotes water quality class

B1A" and \Perlodidae family at abundance level

A denotes water quality class B1B", while there is

an exception to the latter general pattern that is:
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\Perlodidae family at abundance level A along with

Rhyaco�lidae family at abundance level B denote

water quality class B1A".

Finally, we consider the Decision Trees [9]. A

tree graph structure is used in order to represent

class de�nitions. Every node of the tree repre-

sents an attribute while the edges emanating for

this node represent the possible values for the at-

tribute. Nodes that are leaves represent the di�er-

ent classes. Therefore, a complete path of this tree,

a path beginning from the root to a leave, consist

of nodes that represent values to certain attributes

which, in turn, form a de�nition of the class repre-

sented by the leaf of this path.

cool

sunny

temperature

outlook

P

overcast

P
rain

windy

false

P

true

N

Figure 4: A Decision Tree

We can identify the notion of general patterns

and their exceptions in decision tree. Meanwhile,

this is not as obvious as in the case of decision

lists. To see this, let us �rst de�ne the concept of a

broom. A broom is a set of complete paths result-

ing from a path fROOT;N1;N2; : : : ;Nig along with

all the paths in the subtree rooted at Ni. If most

of paths of a broom represent the same class C, we

can identify as a general pattern the de�nition of

C formed by the nodes fROOT;N1;N2; : : : ;Ni�1g.

This general pattern can be considered along with

exceptions formed by the paths of the broom that

do not represent class C.

Consider, for example, the decision tree shown

in Fig. 4. The tree concerns the classi�cation of

\Saturday Mornings" into suitable and not suitable

ones for a certain unspeci�ed activity [9], accord-

ing to some environmental attributes. The path

temperature; outlook along with all the paths in

the subtree rooted at outlook de�ne a broom. Most

of the paths in this broom represent class P. There-

fore, we can identify the general pattern \Cool Sat-

urday Mornings are suitable". Meanwhile there is

a path that represents class N. Therefore, we can

identify the exception \Cool, rainy and windy Sat-

urday Mornings are not suitable".

4 The proposed methodology
We can conclude, from the previous section, that

the notion of general patterns and their exceptions

is inherent in data mining process. Therefore, if

we represent general patterns as an initial knowl-

edge using a nonmonotonic inheritance scheme, we

can �nd their exceptions re�ning the initial knowl-

edge with respect to database records as training

examples.
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Figure 5: An example

Rules representing general patterns can be de-

�ned by experts and they are used, along with their

possible exceptions, to form an initial inheritance

network. The latter is used to initialize a con-

nectionist network that is trained using relational

data. Finally, re�ned rules are extracted in the

form of a new inheritance network.

Assume, for example, that an expert de�nes

the three general patterns mentioned in the pre-

vious section. An initial inheritance network is

constructed as shown in Fig. 5, taking under con-

sideration the possible exception G. The inter-

pretation of the symbols is as follows: A stands

for BAD, B stands for COMMON, C stands for

GOOD, D stands for EMPLOYEESOF GOVERN-

MENT COMPANIES, E stands for RESIDENTS

OF AEGEAN ISLANDS, F stands for YOUNG

CUSTOMERS and �nally G stands from YOUNG

EMPLOYEES OF GOVERNMENT COMPANIES

RESIDENTS OF AEGEAN ISLANDS. The previ-

ous inheritance network, in turn, is used to initial-

ize a connectionist network as shown in the same
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�gure. The latter is trained using relational data

as training examples. Finally, re�ned rules are ex-

tracted in the form of a new inheritance network,

as shown in Fig. 6. This re�ned inheritance net-

work can be used in answering whether \Employ-

ees of government companies, residents of Aegean

Islands are bad customers".

The proposed method that extracts the re�ned

rules heavily relies on reversing the initialization

phase. The cells of the connectionist network are,

simply, transformed into nodes of the NIN. But the

re�nement of the initialized knowledge is actually

represented by the changes in the weights of the

connections of the connectionist network. These

changes impose the re�nement of the initialized

knowledge, resolving conicts. The initial knowl-

edge of the inheritance network is changed due to

insertions of exception links.

4.1 Resolving conicts

Nonmonotonic multiple inheritance frequently in-

troduces multiple extensions of a theory. These

multiple extensions are due to conicts in the rep-

resented knowledge. Usually, all cases of multiple

inheritance are treated as cases of ambiguity, e.g.

in [15], and there is no e�ort to resolve the conicts,

as it is the case in [14].

Using NCESs, during the knowledge re�nement

phase, the conicts can be resolved in favor of the

most probable ones, with respect to the training

set. In resolving conicts, a technique is used based

on the identi�cation of the extension that is sup-

ported by the set of classi�ed examples used during

the re�nement phase. Extensions are actually rep-

resented by paths of the inheritance network, and,

hence, of the connectionist network. The identi-

�cation of the prevalent extensions, after the re-

�nement phase, is achieved by the identi�cation of

changes in the weights attached to the connections.

In the example of Fig. 5 the initial weights are

shown there. During the re�nement phase some of

the initial weights are changed trying to minimize

the error function:

E =
P3

i=1

h
�(NOUTi)� (2DOUTi � 1)

i2
,

since there are three output cells of concern. Thus:

E=
h�
(w2;1 ] S2) ] (w3;1 ] S3)� (2DOUT1 � 1)

�2

+
�
(w5;3 ] S5)] (w4;3 ] S4)� (2DOUT3 � 1)

�2

+
�
(w6;4 ] S6)� (2DOUT4 � 1)

�2i
:

A table with 100000 records is used as a training

set. This table is the same as the one used by

the CN2 algorithm when the rules of Fig. 3 are

extracted. 7271 records of this table are of the

form:

<\young employees of government companies,

residents of Aegean Islands",\bad">

that is transformed as:

in7 = 1; DOUT4 = 0; DOUT3 = 0; DOUT1 = 1;

2437 records of them transformed to the form:

in7 = 1; DOUT4 = 0; DOUT3 = 1; DOUT1 = 0;

1293 records of them transformed to the form:

in7 = 1; DOUT4 = 1; DOUT3 = 0; DOUT1 = 0:

Epochs of the re�nement process are exhibited in

the following table (for details see [3]):

w0
6;4 w0

4;3 w0
3;1 E h

1 �4 �3 77664 2

3 �4 �3 77664 �2

�1 �4 �3 44004

�1 �4 �3 44004 5

�1 1 �3 44004 �5

�1 �9 �3 44004 10

�1 6 �3 54348

�1 �4 �3 44004 4

�1 �4 1 44004 �4

�1 �4 �7 44004 8

�1 �4 5 29840

In the initialized connectionist network preva-

lent extensions are those represented by path con-

taining connections with weights of maximum ab-

solute value. Since negative weights support nega-

tions, a decrease of a weight gives a further prece-

dence to a prevalent extension supporting nega-

tions. On the other hand, an increase of a weight,

since it is toward canceling a negative weight, gives

precedence to a prevalent extension supporting a

positive result. An increase or a decrease of a

weight, wi;j, is de�ned with regard to its value be-

fore the re�nement phase, w0
i;j .

When a prevalent extension is identi�ed by a

change in a weight, the extracted inheritance net-

work is modi�ed in order to support this extension.

This is achieved by adding to this inheritance net-

work, a proper exception link, positive or negative

depending on the supported by the extension re-

sult. The added exception link concerns the exten-

sion as a whole and, clearly, not the existed, in the

initial inheritance network, exception link whose

the corresponding connection has changed. There-

fore, the added exception link is attached to the

path that represents the extension.
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Consider, for example, the trained connection-

ist network of Fig. 6. There is an increase in the

weight w3;1 that identi�es the extension G! D !

A as prevalent. Therefore a positive exception link

(G;A) is added that supports this prevalent exten-

sion. Notice that the added link does not a�ect the

existed negative exception link (B;A), that has to

remain. Moreover, there is a decrease in the weight

w6;4. Therefore, a negative exception link (G;C) is

also added.

G

D F

A

E

C

B

Figure 6: Resolving conicts

In order to add properly exception links we need

to identify the path that represents a certain exten-

sion. Since, a prevalent extension is identi�ed by a

change in a weight of a connection that represents

an existed exception link, we consider that an ex-

tension is represented by a path containing the tail

and head nodes of this exception link. Such a path

is the G ! E ! B ! A in Fig. 6, containing the

tail node B and the head node A of the existing

exception link (B;A).

In general, if there exists a path from the node

representing the input cell under consideration to

the node representing the output node under con-

sideration, we add an exception link between these

two nodes. The exception link is positive (nega-

tive) if there is an increase (decrease) to a negative

(positive) weight or a decrease (increase) to a pos-

itive (negative) weight.

4.2 The extraction algorithm

To attack both of the above cases, during the re-

�nement phase, the training method is applied on

selected weights. Mainly, these weights are the ones

that correspond to exception links. Therefore, any

change to a weight guarantees the prevalence or

the validation of an exception link. Meanwhile,

in the case of resolving conicts, if there are ex-

tensions represented by paths without exceptions,

then, since only the weights that correspond to ex-

ception links are considered, the identi�cation of

the prevalent extension is not possible. Actually,

in such a case the initialized connectionist network

can not be trained.

We cope with this problem by allowing the ad-

dition of weights to the set of selected weights that

correspond to ordinary links. These are the weight

of connections that are adjacent to cells represent-

ing nodes without incoming exception links. Notice

that adding exception links, in the case of resolv-

ing conicts, is related to the implementation of

the inheritance network.

The extraction algorithm at �rst transforms cells

and connections to nodes and edges. Then, the al-

gorithm adds proper negative or positive exception

links if a prevalent extension is identi�ed. The ex-

traction algorithm is shown in the following:

Given: the trained connectionist network with:

a set of cells U = fu1; : : : ; ukg, a set of weights

W = fwi;jji; j � kg along with the set of weights

W 0 = fw0
i;jji; j � kg before the re�nement phase,

Revise the Inheritance Network N, with:

� a set of nodes V

� a set of edges that represent ordinary relations R

� a set of edges that represent exceptional positive

relations POS

� a set of edges that represent exceptional negative

relations NEG

Executing the following algorithm:

1. for each cell ui 2 U :

construct a node vi 2 V

2. for each connection from ui to uj :

if wi;j = 1 then

construct an edge e = (i; j) 2 R

if wi;j < 0 then

construct an edge e = (i; j) 2 NEG

if wi;j > 0 then

construct an edge e = (i; j) 2 POS

3. for each connection from ui to uj
where jw0

i;jj 6= jwi;jj:

if a path h; t containing (i; j) exists,

where h is the node representing input

under consideration and t is the node

representing output under consideration

then

if w0
i;j < wi;j then

add (if it does not already exist)

the exception link e = (h; t) 2 POS.

elseif w0
i;j > wi;j then

add (if it does not already exist)

the exception link e = (h; t) 2 NEG.
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5 Conclusion
A new methodology for mining classi�cation rules

from large relational databases is presented. The

main advantages of the proposed methodology are

a) it exhibits a high accuracy in the classi�cation

process,

b) it is simple and it always gives the answer with

certainty,

c) it gives the ability to the user to directly ma-

nipulate the mining process.

We are currently applying the proposed methodol-

ogy in real life applications and our experience is

that it is a robust and e�ective one.
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