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Abstract: - This paper presents the use of  both conventional fuzzy and neuro-fuzzy structures in a qualitative
control of a fluid mixer, which is a multivariable and intrinsically non-linear plant. The mixer has as inputs two
fluids of different colours and, as its output, the colour of the resulting mix. The actual control system consists
of two independent fuzzy controllers which are responsible for maintaining the water level at a given height
and for adjusting the colour of the fluid in the mixing tank. Initially, the set of rules is established based upon
operator's experience. Since, in general, one of the main difficulties in the design of fuzzy control systems,
especially when the plant is a complex one, is the definition of an optimal or near-optimal rule-base, a neuro-
fuzzy controller is also implemented. This offers the possibility of creating the rule-base automatically, through
the constant evaluation of the system error during a learning phase. Simulation results show that responses can
be improved by the use of  neuro-fuzzy controllers.
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1 Introduction
Ordinary fuzzy controllers have been succesfully
applied to a variety of plants since the pioneering
works of the mid-1970s. In the case of multivariable
processes, the natural approach would be to consider
as rules antecedents all the controller inputs, which
grow in number as the number of desired outputs, or
reference inputs, grows. This would certainly make
the process of designing the control strategy, or rule-
base, a more complex one. On the other hand, if
independent controllers are used for each reference
input, rule-base design becomes simpler and the
control strategy becomes potentially more reliable.

In the case of robot control through a learning
fuzzy controller [1], it has been shown that the use
of independent controllers for each link can give
good results. That is, the controllers, by adjusting
their sets of rules, cope very well with the coupling
between variables.

In this work the approach of using separate
fuzzy controllers is also employed. The plant,
described in the next section, is a fluid mixer, which,
by presenting non-linear characteristics, provides an

additional complexity and constitutes a good test for
the designed fuzzy and neuro-fuzzy control systems.
These are employed in the control of the coloration
of the resulting mix of two different fluids, while
avoiding overflow in the mixing tank. The
introduction of  a new variable allows the reasoning
process to occur in a decoupled fashion, and, in
consequence, two independent controllers can be
used. A similar strategy has been employed before
[2] and results have been encouraging.

The aim of the current work is to compare
process responses under different strategies, one
based on operator's experience and the other on
automatic rule-base generation. In this, a neuro-
fuzzy approach is used to create an appropriate rule-
base through training. A linguistic description with
fuzzy rules is used for the error definition in the
rule-base learning process. The replacement of both
fuzzy controllers by two neuro-fuzzy ones is
expected to give better responses. The size and
shape of the fuzzy sets are kept the same in both
cases, so that results obtained with the fuzzy and
neuro-fuzzy structures can be compared.



2 Description of the Plant
The plant, shown in Fig. 1, consists of a mixing and
two auxiliary tanks. The first auxiliary tank contains
coloured water c1, while the second one contains
clear water c2. The input flow q to the mixing tank is
controlled by two valves, which regulate the output
flows q1 and q2 from the auxiliary tanks. The output
flow q0, taken as a disturbance,  has the coloration c
of the resulting mix and is a function of the output
pipe cross-section ab, of the liquid level h in the
mixing tank, and of a constant Cd related to the
shape and material of the output pipe. In order to
simplify the simulation, it has been assumed that the
auxiliary tanks always contain sufficient liquid for
the process to keep on running. The mixing tank
dimension is 20x10x80 cm and the output cross-
section ab can be set to values between 0 and 0.4
cm2. The output flow q0 lies between 0 and 60
cm3/sec. Colorations c1 and c2 are set to 1 and 0,
respectively.

Fig. 1 - The Fluid Mixer

To derive a practical mathematical model so that
simulated experiments can be performed, the time
needed to obtain a uniform mixture, time delays
related to flows in the pipes, and the dynamics of
input and output valves have been neglected [3]. The
following equations model the plant dynamics:
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where g is the gravity acceleration, V is the volume
of liquid and S is the area of the liquid surface in the
mixing tank. By using (3) in (1):

S

q

S

2ghCd.ab.

dt

dh (4)

The mixing process is modelled by:
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By combining (5) and (6):
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Equations (4) and (7) describe the system's
dynamics; h and c0 are the variables to be
manipulated by the controlling system.

3 Fuzzy Control Strategy
The control strategy used is described by a set of
linguistic statements, or rules. Consider, for
example, the case where each control rule relates
two input variables e and ce to the controller output
u, and a control algorithm consisting of a set of rules
R1, R2,..., Rn, of the IF (E is Ej) AND (CE is CEj)
THEN (U is Uj) form, connected by a ELSE
connective. The combination of those rules can be
expressed mathematically (by its membership
function) as:

RN (e,ce,u) = f1[ R1 (e,ce,u), ...., Rn (e,ce,u)]        (8)

where f1 expresses the ELSE connective. In (8), each
control rule j can be expressed as:

Rj (e,ce,u) = f2 [f3 ( Ej (e), CEj (ce)), Uj (u)] (9)

In (9), E = {e}, CE = {ce}, U = {u} are finite
universes and Ej, CEj and Uj are fuzzy subsets of
those universes. The operator f2 stands for
implication [4], and f3 is the interpretation of the
connective AND, which is usually taken as min ( ).
The controller decides which action to take through
a compositional rule of inference. As is generally the
case in control, the controller inputs are real
measured values given by singletons, and called here
es and ces. The controller output fuzzy set Us will
thus be given by:

Us(u) = f1[f2 ( E1(es)  CE1(ces), U1(u)),....
...., f2 ( En(es)  CEn(ces), Un(u))]    (10)

Since the process requires at its input non-fuzzy
values, the controller output fuzzy set must be
defuzzified, the result being a value us.



4 Neuro-Fuzzy System
The neuro-fuzzy controllers have been implemented
through the use of the NEFCON system [5] which is
able to learn and to optimize online the rule-base of
a Mamdani-like fuzzy controller by a reinforcement
learning algorithm that uses a fuzzy error measure.
The NEFCON model is based on a backpropagation
network, with one hidden layer. An example of a
neuro-fuzzy controller structure with 6 rules, 2
inputs and one output is shown in Fig. 2.

The hidden nodes represent the rules R1, R2,
R3,...R6; the input layer nodes ( 1, 2) represent the
input values; and the output node ( ) corresponds to
the controller output. The weights r

(i)  represent the
antecedents Ar and the weights vr

(i) represent the
consequent Br. For example, rule 1 (R1) is translated
as:
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Fig. 2 - Neuro-Fuzzy System

Rules with the same antecedents (Ar) have the same
weights, thus ensuring the integrity of the rule-base.

The learning process of the neuro-fuzzy system
is accomplished in two steps, which are (i) weight
initialisation and supervised learning process and (ii)
rule-base optimisation. Since the learning process is
supervised, the generation of a suitable set of rules is
highly associated to the error definition supplied to
the neuro-fuzzy system during the learning phase.
The NEFCON system has several options for that
error definition and in this work a linguistic error
description with fuzzy rules is used. These rules
describe, in an intuitive way, the system should
behave when it is driven towards its optimal state.
As the starting rule-base is an empty one, initial
fuzzy partitions of the input and output universes are
supplied to the neuro-fuzzy system, which, in turn,
derives the rules based upon the fuzzy error

information. Rule optimisation is performed by
shifting rules consequents and changing the support
of antecedents. Since the main objective of this work
is to compare rule-bases designed either by an
operator or in an automatic way, and then evaluate
the responses in each case, it was deemed more
sensible to keep fuzzy sets definitions and positions
the same in both cases and, therefore, skip
optimisation.

In the fluid mixer case, where variables can be
decoupled, two separate neuro-fuzzy structures are
used for the control of coloration and level (height)
of fluid in the mixing tank. The decision must be
taken upon information of  height and coloration
errors, as well as of the output flow. The fuzzy sets
and universes used for the error definition for rule
learning are shown in Figs. 3 and 4 while some
typical rules, out of 25 possible ones, of the
linguistic error description for height control are:

If  height error is nb an output flow is z
then error is n

If height error is nm and output flow is z
then error is n

If height error is z and output flow is z then
error is nz

If height error is pm and output flow is s
then error is pz

If height error is pb and output flow is z
then error is pz

The rules for coloration control are similar, with
the obvious adaptation of the fuzzy variables. The
rules consequents provide the error information the
neuro-fuzzy system needs for rule learning.

Fig. 3 - Membership functions for height error for
rule learning

Fig. 4 - Membership functions for output flow and
for error for rule learning



5 Control System
In the fluid mixer under consideration, the control
system has to be designed to keep both the output
coloration c0 and the liquid height h in the mixing
tank at desired setpoints. The quantitative
information needed by the control system in order to
attain these goals is given by the coloration error ec

and change in coloration error ec, the height error
eh, and the output flow q0. Since the chosen strategy
makes use of two independents fuzzy controllers,
one for height control and another for coloration
control, it is more convenient to choose as output
variables the total flow q (eq. 2) and the proportion
qr of coloured water in the total flow, defined as:
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r qq
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The height controller has two quantitative inputs, eh

and q0, and one output, q. The coloration controller
has as quantitative inputs ec and ec, and qr as its
output. There is a slight difference between those
controllers: while in the former precision is not a
fundamental factor, in the latter the goal is to have a
fine control, with null steady-state error if possible;
thus the use of a structure with PI characteristics.

5.1 Height Control

In the design of the height controller, fuzzy sets NB,
NM, Z, M, B, PB are assigned to Eh={eh}, and Z, S,
M, B, VB, to Q = {q} and Q0 = {q0}, as specified by
their membership functions shown in Figs. 5 and 6.
The universes for each variable are shown in those
figures. The non-fuzzy actual values of the measured
input variables are mapped to the chosen universes
of discourse through scaling factors GEh and GQ0,
which are part of blocks S0 and S1 in the diagram of
Fig. 9. The resulting values are called ehs and q0s.
The defuzzified controller out-put qs is mapped to
the process input actual values through a scaling
factor GQ, so that q = qs x GQ. In this controller, f1

is implemented by max and f2 by min [6]; Mean of
Maxima (MOM) is used for defuzzification.

Fig. 5 - Membership functions for Eh

Fig. 6 - Membership functions for Q and Q0

The rule-base for height control for the ordinary
fuzzy controller (in italics) and the resulting rule-
base for the neuro-fuzzy controller (after learning)
are shown in Table 1. The entries correspond to the
values of the total flow Q.

Q Z S M B VB
M B VB VB VB

PB
M VB VB VB VB
S M B VB VB

PM
M M M M VB
Z S M B VB

Z
Z M M M VB
Z Z S M B

NM
M Z Z M M
Z Z Z M B

NB
M M Z Z Z

Table 1 - Fuzzy (italics) and Neuro-Fuzzy rule-
bases for height control

5.2 Coloration Control

In the coloration controller, fuzzy sets NB, NB, Z,
PM and PB are used for Ec={ec} and Ec={ ec},
while NVB, NB, NM, NS, Z, PS, PM, PB and PVB
are used for the controller output Qr={qr}, as
specified by their membership functions shown in
Figs. 7 and 8. The universes are as shown in those
figures. The actual measured values of the controller
inputs are mapped to the universes of discourse
through scaling factors GEc and G Ec (contained in
blocks S2 and S3 in the diagram of Fig. 9), the result
being variables ecs and ecs. The defuzzified
controller output qrs is mapped to the process input
actual values through a scaling factor G Qr. The
actual input flows q1 and q2 to the fluid mixer are
given by q1=qr  q and q2=qr - q1. In this controller, f1

is implemented by max, and f2 by product [6];
defuzzification is performed through Center of
Gravity (COG).

q0

eh



Fig. 7 - Membership functions for Ec and Ec

Fig. 8 - Membership functions for Qr

The larger number of fuzzy sets used for the
controller output in coloration control, as compared
to height control, is due to the requirement of high
accuracy in the coloration of the resulting mix. The
reason for keeping h at a desired setpoint is mainly
to prevent an undesirable overflow in that tank.

The rule-bases for coloration control for the
ordinary fuzzy controller (in italics) and for the
neuro-fuzzy one (after learning) are shown in Table
2, where the entries correspond to the values of Qr.

6 Simulated Experiments
The process response will depend on the scaling
factors, which can be empirically set beforehand and
then tuned in order to improve the controller
performance. For example, in the case of the fluid
mixer, the range established for q and q0 was from 0
to 60 cm3. Since the corresponding universes are
[0,4], GQ and GQ0 were initially set at 15. In the

case of the conventional fuzzy controller, this value
resulted in satisfactory responses and did not need to
be tuned. The maximum possible height error eh was
assumed to be  7 cm, which, by considering the
corresponding universe as [-2,2], gives GEh=0.3. In
order to achieve good accuracy in coloration, and
considering that the universe is [-2,2] for that
variable, the scaling factor GEc was set at 200;
G Ec was set at 1500 and G Qr , to 1/15.

Qr NB NM Z PM PB
NVB NB NM NS Z

PB
NV NV NV NV NV
NB NM NS Z PS

PM
NV NV Z Z NV
NM NS Z PS PM

Z
NV Z Z Z NV
NS Z PS PM PB

NM
PV Z Z Z Z

Z PS PM PB PVB
NB

PV PV PV PV PV

Table 2: Fuzzy (italics) and Neuro-Fuzzy rule-bases
for coloration control

For simulation, MATLAB , its associated tool
SIMULINK and the FuzzyToolbox have been used.
The simulation diagram is shown in Fig. 9.

Experiment 1: The resulting mix coloration
behaviour is shown in Fig. 10, when a step from 0 to
0.3 is applied to the reference input; the level of
liquid in the mixing tank should be kept constant at
30 cm. The response obtained with the neuro-fuzzy
controller (NF) reaches the setpoint faster than that
obtained with the ordinary fuzzy controller (F).

Fig. 9 - Simulation Diagram

ec

 ec



Fig. 10 - Experiment 1: coloration control

Experiment 2: The level (height) of liquid in the
mixing tank is shown in Fig. 11, when steps from 0
to 40 and then to 25 cm are applied to the height
reference input. The final coloration should be kept
unchanged at 0.5. It can be observed that in both
cases the reference input is reached, but the process
response obtained with the the neuro-fuzzy
controller (NF) is once again faster than that
obtained with the simple fuzzy controller (F).

Fig. 11 - Experiment 2: height control

Experiment 3: Coloration and height variations are
shown in Fig. 12, when steps of 0 to 0.3 and then to
0.15 are applied to the coloration reference input and
steps of 0 to 40 and then to 25 cm. are applied at the
same time to the height reference input. As can be
observed, the response provided by the neuro-fuzzy
controller for coloration is faster than in experiment
1. This is caused by a large input flow; the height
controller is trying to reach the setpoint and the input
flow is at its maximumat the same time.

7 Conclusions
Experiments have shown that the approach of using
two independent neuro-fuzzy controllers in the
control of a MIMO system can give good results.
The rule-base generated through the learning
process, although different from that defined by an
expert, works perfectly well and the main objective
of reaching a specified coloration for the liquid in
the mixing tank was achieved with good precision.
The neuro-fuzzy system is able to create an

appropriate set of rules, thus overcoming the
difficulty of defining the rule-base. The neuro-fuzzy
and fuzzy rule-bases are similar in some cases, and
in general they do not conflict, being different only
in terms of intensity of the fuzzy variables (ex. NVB

 NM) in the region near to the setpoint.

Fig. 12 - Experiment 3: Neuro-Fuzzy simultaneous
coloration (a) and height control (b)

Some care must be taken when defining the error
to be supplied to the neuro-fuzzy system during the
learning process. The neuro-fuzzy system is highly
sensitive to this information, which plays a crucial
part in the effectiveness of the learning process.
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