
Design of a Programming System for Mobile Objects

KAZUAKI MAEDA

Department of Business Administration and Information Science,

Chubu University

1200 Matsumoto, Kasugai, Aichi 487-8501, JAPAN

Email: kaz@solan.chubu.ac.jp

Abstract: This paper describes Escar programming language and Yare tool set for

object serialization to implement mobile objects. We are engaged in the devel-

opment of RoboCup soccer agents with mobile objects. To implement it, a new

programming language Escar was designed. The main idea is to use time as a pri-

mary key for search. It leads us to dynamically recon�gurable systems. Moreover,

a new object serialization system was designed. It supports representation indepen-

dence and language independence. The result is that it is more powerful than the

object serialization in Java. We believe that Escar and Yare are indispensable tools

used to implement agents with mobile objects. The basic principles are described

in this paper.

Key-Word: Agents, Mobile Objects, RoboCup, Object Serialization, Java

1 Introduction

For the last decade, many researchers have

devoted their e�orts toward building multiagent

systems loosely coupled agents[1, 2]. The agents

coordinate their actions for mutual bene�t. More-

over, they help one another to achieve their goal.

Due to the growth of the computing power and

the proliferation of networking, the multiagent re-

searches become very important.

For the last few years, there have been many

projects for RoboCup(The World Cup Robot

Soccer)[3, 4, 5]. RoboCup has been proposed as

a standard problem to promote the research of

multiagent systems. In RoboCup, robots or a-

gents play a soccer game under given constraints.

It consists of some competition tracks, for exam-

ple, simulator league, real robot small size league,

and real robot middle size league. Our agents,

called Kasuga-bito II, are software programs writ-

ten in C for the simulator league. Kasuga-bito II

was runner-up in the JapanOpen '98 [6], and was

champion in RoboCup Paci�c Rim Series '98 [7].

Now Kasuga-bito II is rewritten in Java and

it utilizes inter-agent communication by mobile

objects. If a soccer agent exhausts its stamina,

it does not play enough. In that case, our agen-

t can send its own objects to another agent who

has more stamina and delegate its behavior. It is

called behavior delegation.

The behavior delegation requires one to load

the classes into another remote agent. To do that,

we can use ClassLoader in standard Java class

libraries[8]. However, the ClassLoader is so prim-

itive that the programming work is error-prone.

1

Moreover, the behavior delegation requires

one to write the state of objects and to send it

to another agent. To do that, we can use object

serialization. However, the object serialization in

Java is not so powerful considering the experience

of the development of our agents.

Consequently, a new programming lan-

guage, Escar, and the runtime environment were

designed to build soccer agents with mobile ob-

jects capability. The language is syntactically the

extension of the Java programming language, but

the runtime environment is completely di�erent.

Furthermore, a new tool set Yare for object seri-

alization was designed to write/read the state of

objects. It supports representation independence

and language independence.

In section 2, we will explain RoboCup and

the experience of implementing mobile objects in

Java. In section 3, we will explain the design of

Escar programming language. In the section 4, we

will explain Yare tool set for object serialization.

In the conclusion, the paper will be summarized.

2 Soccer Agents and its Implementation

in Java

2.1 Soccer Agents in RoboCup

RoboCup has features di�erent from typical

traditional AI problems such as computer chess

in that situations change dynamically and in real-

time. Therefore, we cannot apply the traditional

techniques to RoboCup. To develop a high level

robot soccer game, we must investigate some new

techniques for individual agents and teams.

We have been investigating only the soft-

ware soccer simulation and have been developing

our agents called Kasuga-bito II. Kasuga-bito II

was runner-up in the JapanOpen '98 [6] and was

champion in RoboCup Paci�c Rim Series '98 [7].

One of the features of our agents is that they learn

better positions during the soccer simulation game

by themselves, and they hold the positions onto

this data.

In RoboCup soccer simulation, each agent

has its own stamina[9]. The agent can dash with

power lower than the stamina. The stamina is de-

creased by the power, and is increased with time.

If an agent exhausts its own stamina, it can not

play enough. Especially when a forward agent ex-

hausts its stamina, the scoring ability of the team

drastically decreases. In that case, our agents can

send its own objects to another agent who has

more stamina and delegate its behavior.

Once the objects in an agent which exhausts

its stamina are sent and the agent delegates to an-

other agent, the delegated agent can play like the

original one. We implemented the behavior dele-

gation [10] by class loader and object serialization

in Java.

2.2 Class Loader in Java

In Java, we can customize a class loader to

de�ne policies for loading Java classes into the

runtime environment. An abstract class, Class-

Loader, is prepared for it[8]. We can send a class

in the form of byte codes and load the class into

a remote environment.

A new class loader can be created by de�n-

ing a subclass of ClassLoader and implementing

the abstract method loadClass. The brief proce-

dures of the method are:

1. reading the byte codes of the class,

int byteCount;

FileInputStream fis;

....

byte[] data = new byte[byteCount];

fis.read(data);

2. creating the class object,

Class c=defineClass(data,0,data.length);

3. and resolving the class.

resolveClass(c);

The ClassLoader is very convenient to load

class byte codes into a remote environment. It

is, however, not so owerful in implementing the

behavior delegation of our soccer agents. In Java,

a class to be loaded by a ClassLoader and another

class to be loaded by another class are regarded as

di�erent classes even if both of the names are the

same. It means that we can not replace an existing

class to a new class in runtime. To implement the

behavior delegation, we need hacked codes. The

work is error-prone and requires a great deal of

e�ort.

Consequently, a new programming language

Escar was designed. It is syntactically the exten-

sion of the Java programming language. The u-

nique feature is the dynamic recon�guration. Sec-

tion 3 explains it.

2.3 Object Serialization in Java

The object serialization is included in stan-

dard Java classes[11]. It supports the encoding

of objects (and the objects reachable from them)

into a byte stream (ObjectOutputStream). The

encoding is called serialization. Moreover, it sup-

ports the reconstruction of the objects from a byte

stream (ObjectInputStream). The reconstruction

is called deserialization. The writeObject method

in the class ObjectOutputStream is responsible for

writing the state of the object. Furthermore, the

corresponding readObject method in the class Ob-

jectInputStream can restore it.

The object serialization in Java is helpful in

implementing mobile objects. However, it has two

drawbacks:

1. Serialization and deserialization are low level

for programmers.

A program must read objects in the same or-

der as the program that writes objects. It

means that programmers make their codes

like primitive sequential �le access opera-

tions. This is tedious and error-prone work.

2. All kinds of objects are not serializable.

Default methods, writeObject and readOb-

ject, do not serialize static objects. More-

over, the variables in the class without seri-

alizable interface are not serialized. We can

customize those two default methods by over-

riding them. However, programmers have to

write codes for all variables they want to se-

rialize.

Consequently, a new tool set Yare for object

serialization was designed. The section 4 brie
y

explains it.

3 Escar: A New Programming Language

A new programming language, called Escar,

was designed to implement the behavior delega-

tion. The main idea is to use \time" as a primary

key for search. Time is one of the absolute mea-

sures around us and is useful to search for what we

want. Next sections describe the storage model of

Escar and the execution model.

3.1 The Storage Model

We have to manage a lot of information in

the daily o�ce work. In the typical method, we

usually classify the information by some category

and keep it in boxes or �le cabinets. However,

the classi�cation categories tend to change as time

passes. Moreover, after classi�cation, the stored

information is sometimes useless.

To overcome the problem, an exciting

method is proposed[12]. It emphasizes the use of

\time" as a primary key for search. It says that it

is useless to classify information because it takes

trouble and time to do it. If we can use \time"

as the primary key, we do not have to classify in-

formation. The past time does not change so that

the classi�cation problem does not happen at all.

According to our experience of applying it to real

o�ce work, it is very useful to search for informa-

tion by time order.

Escar is a programming language that ap-

plies the above method. Everything (cf. object-

s, classes, methods, data, etc.) is stored and

wrapped in an \envelope". The envelope is a basic

storage unit and it can have a name to identify it.

An envelope with no name is also available. It can

have some attributes to characterize the envelope

For management of the envelope, all we have

to do is push the envelope into a \shelf" like s-

tack data structure(Fig.1). The shelf manages the

envelopes by time order. When the envelope is

pushed onto the shelf, the envelope enters from

the leftmost edge.

Fig. 1: Pushing and extracting the envelope

When we modify or refer to an envelope,

we look for it by time order and we can extract

it from anywhere. After the modi�cation or the

reference, the envelope reenters from the leftmost

edge of the shelf.

The merit for time ordered management is

�rstly that we can access the newer envelope faster

than the older one. This is because the recent-

ly accessed envelopes gather on the left edge of

the shelf. Secondly, we can easily �nd the use-

less envelopes. The reason for this is that the

envelopes which have not been recently accessed

gather around the right edge of the shelf.

3.2 The Execution Model

In Escar, we can execute the contents of

the envelope by message passing and delegation

mechanisms[13]. When we want to execute some

program codes, we pass the message to the corre-

sponding envelope. If the contents of the envelope

are matched to the message, the contents are in-

voked. If the contents are not matched to it, the

message is delegated to the next envelope by time

order.

In message passing, we can specify two kind-

s of message receivers. One is the newest envelope

and the other is the envelope identi�ed by the en-

velope name. If we specify the newest envelope

and its contents are matched to the message, the

message will not go to the older envelope. If we

specify the envelope identi�ed by its name, we can

invoke the envelope without relation to time order.

4 Yare: A Tool Set for Object Serializa-

tion

A new tool set, called Yare, was designed for

object serialization. The objects which the users

want to serialize, are put into a kind of container.

It is called abstract-data.

The abstract-data realizes representation in-

dependence. Let us refer to Fig. 2. A cloud in

the center of the �gure depicts the abstract-data.

It supports abstraction to the internal represen-

tation. For access of the objects, the users are

forced to invoke the methods, setter/getter, which

are generated by a Yare tool. The setter method

sets an object to a variable, and the getter method

gets an object from a variable. As a result, they

do not have to know about the concrete internal

representation of the abstract-data.

When users want to serialize or deserialize

the objects, all they have to do is invoke the se-

rialization method or the deserialization method.

Yare supports more than one data format for se-

rialization, for example, XML[14] and Java serial-

AbstractData
(Escar,Java,

XML,...)

Program Program

setter getter

Disk Network

Fig. 2: Basic Design of Yare

ized data format. When users invoke the serial-

ization method, the data format is speci�ed. This

implies that the concrete serialized data format is

hidden from the programs.

The abstract-data realizes language inde-

pendence. We can basically use the primitive data

type, that is, Integer, Real, String and Boolean.

In addition to that, we can use abstract-data as

data type, for example, ExchangedData in Fig.

3. The Yare tool generates the language speci�c

codes from the de�nition of the abstract-data.

In addition to the abstract-data, abstract-

interface is de�ned in the Yare language (described

in Fig. 3). The abstract-data has language in-

dependent de�nitions. On the other hand, the

abstract-interface includes language speci�c def-

initions. As previously stated, the abstract-data

is a collection of data . The Yare users put the da-

ta which they want to serialize into the abstract-

data. The abstract-interface speci�es:

� a target programming language,

� language speci�c de�nitions, and

� the name of serialization methods and dese-

rialization methods.

AbstractData ExchangedData Is

String s;

Date d;

End

AbstractInterface ExchangedData Is

Lang Java {

Import java.util.*;

};

In LoadObject Use XML;

Out SaveObject Use XML;

End

Fig. 3: An example of abstract-data and abstrac-

t-interface

The Yare tool set generates some codes of

the speci�ed target language by \Lang" state-

ments. Language dependent de�nitions must be

described in it. As an example, Java language is

speci�ed in Fig. 3. Moreover, \import java.util.*"

is described so that users can use \Date" data

type.

In the abstract-interface, we can specify the

name of the serialization method and the deserial-

ization method by the keywords \In" and \Out"

respectively. In Figure 3, \LoadObject" is the se-

rialization method, and \SaveObject" is the dese-

rialization method.

5 Conclusion

This paper described Escar programming

language and Yare tool set. They are designed

to build mobile objects.

The main idea of Escar is to use time as

a primary key for search. As natural result, a

program written in Escar is dynamically recon-

�gurable. Yare supports new object serialization.

The features of Yare are representation indepen-

dence and language independence.

We are using Escar and Yare to develop

RoboCup soccer agents. The agent can send the

objects to another agent via inter-agent commu-

nication and it can delegate the behavior. We be-

lieve that Escar and Yare are indispensable tools

used to implement it. We will try another appli-

cation to demonstrate the capabilities.

Acknowledgements

This work has been partially supported by

the Hori Information Science Promotion Founda-

tion.

References:

[1] Michael N. Huhns and Munindar P. Singh,

editors. Readings in Agents. Morgan Kauf-

mann, 1998.

[2] Alan H. Bond and Les Gasser, editors. Read-

ings in Distributed Arti�cial Intelligence.

Morgan Kaufmann, 1988.

[3] The RoboCup Federation.

RoboCup: The Robot World Cup Initiative.

http://www.robocup.org/, 1998.

[4] Minoru Asada, editor. The Second RoboCup

Workshop. Springer-Verlag, 1998.

[5] Hiroaki Kitano, Minoru Asada, et al. The

RoboCup: The Robot World Cup Initiative.

In Proceedings of IJCAI-95 Workshop on En-

tertainment and AI/Alife, pages 19{24, 1995.

[6] JapanOpen98 and

JSME Robotics-Mechatronics Symposia98.

http://www.robocup.org/games/321.html,

1998.

[7] Kazuaki Maeda, Akinori Kohketsu, and To-

moichi Takahashi. Goal-Keeping Skills in

Soccer Simulation Games. In PRICAI'98

RoboCup Workshop, pages 96 { 101, 1998.

[8] Patrick Chan and Rosanna Lee, editors. The

Java Class Libraries: An Annotated Re�er-

ence. Addison-Wesley, 1997.

[9] David Andre, Emiel Corten, et al. Soccerserv-

er Manual. http://www.dsv.su.se/~johank/,

1999.

[10] Kazuaki Maeda and Akinori Kohketsu. A

Consideration of Mobile Objects in Soccer

Simulation Games (in Japanese, to appear).

In JSAI Technical Report, 1999.

[11] Sun Microsystems. JDK 1.2 Documentation.

http://java.sun.com/products/jdk/1.2/docs/,

1999.

[12] Yukio Noguchi. Super Method for Informa-

tion Management (in Japanese). Chuo Shin-

sho, 1993.

[13] David Ungar and Rondall B. Smith. Self:

The Power of Simplicity. In Proceedings of

the 1987 SIGPLAN Conference on Object-

Oriented Programming Systems, Languages

and Applications, pages 227{242, 1987.

[14] World Wide Web Consortium.

Extensible Markup Language(XML).

http://www.w3.org/XML/, 1999.

