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Abstract  :  An  adaptive fuzzy H∞ controller is designed for  the case where the plant’s state vector is not fully
measurable and has to be partially reconstructed via a state observer.  An adaptive fuzzy system compensates the
unknown part of the plant’s model and at the same time forms the base of the state observer. Furthermore a fuzzy

inference-based  algorithm is developed in order to select the optimal H∞ controller and  assure maximum
robustness.  The stability of the closed-loop system is established for a category of plants with slow dynamics.
Finally, the  efficiency of the method is tested  through simulations of the  control of  a dc-motor .
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1 Introduction

In this paper a hybrid control architecture
that combines the merits of adaptive fuzzy systems

and H ∞ techniques is proposed and applied to the
control of a dc-motor. The efficiency of the adaptive

fuzzy controller is enhanced with the use of an H ∞

control element. Previous approaches to the design

of neural and fuzzy adaptive H ∞  controllers can be
found in [1] and [2] .

The  adaptive fuzzy  H ∞ controller
proposed in this paper uses the observed  state
vector which is  constructed with the aid of the
fuzzy-based observer.  The stability of the closed-
loop system is proved via Lyapunov stability theory.

Furthermore, to select an optimal  H ∞ controller
with  maximum robustness, the fuzzy version of an
existing algorithm is developed.  Both the observer-

based adaptive fuzzy H ∞ controller and the
methodology for the selection of the optimal

H ∞ controller were tested in the control problem of
a dc-motor.  Computer simulations verify the
efficiency of the above techniques.

The paper is organized as follows. In

Section 2 the principles of conventional H ∞ control
are reviewed and the fuzzy logic algorithm for the

computation of the optimal H ∞  controller is

analyzed. In Section 3 the H ∞ control  architecture

for a class of nonlinear systems is presented and the
stability of the closed-loop system is proved for the

case where the adaptive fuzzy H ∞ controller uses
the state vector  reconstructed by a fuzzy estimator.
In Section 4 the control problem of a dc-motor is
investigated and  simulation results are given to
illustrate the satisfactory performance of the system
under the proposed hybrid control scheme. Finally,
some  concluding remarks are provided in Section 5.

2 The conventional H ∞ control

2.1.  Design of  Mini-Max controllers
For the linear system described by

x t Ax t Bu t Ld t
•

= + +( ) ( ) ( ) ( )                         (1)
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where the weight r   determines how much the
control signal  should be penalized while  the weight
ρ   determines how much the disturbance influence

should be rewarded. It is also assumed that  :



i) the energy transfered by the disturbance signal
d t( )  is bounded,  i.e.

                     d t d tT ( ) ( ) dt
0

∞

∫ < ∞

ii) [ ]A B   and [ ]A L are  stabilizable

iii) [ ]A C  is detectable .

The meaning of the negative signum of the
disturbance term d t( ) in the above cost function is

that the disturbance tries to maximize the value of
the cost function J t( ) , while the control signal

u t( ) tries to minimize it. The optimization goal is to

find a control signal  u t( ) which is  able to

compensate the worst possible disturbance imposed
to the plant by its external environment.

The optimal mini-max control law is [4] :

  u t Kx t( ) ( )= −    with    K
r

B PT=
1

                  (2)

where P  is a positive definite symmetric matrix
derived from  the algebraic Riccati equation

A P PA Q P
r

BB LL PT T T+ + − − =( )
1 1

0
2ρ

         (3)

and Q  is a positive definite symmetric matrix.

The   worst-case disturbance is given by

d t L Px tT( ) ( )=
1

2ρ
                                          (4)

A crucial point in the design of mini-max controllers
is the choice of the weighting parameter ρ   in the

cost function J u d( , ) . The parameter ρ  is an

indication of the closed-loop system robustness and
has to be selected such that the closed-loop system :
i) can reject the maximum-possible disturbance, and
ii) remains asymptotically stable.

If the values  of ρ > 0 are excessively decreased

with respect to the weighting parameter r ,  then the
solution of the Riccati equation is no longer a
positive definite matrix.  Consequently there is a
lower bound ρmin  of ρ   for which the mini-max

optimization problem has a solution.  The
acceptable values of ρ  lie in the interval

[ )minρ  ,  ∞ . If the value  ρmin  is identified and used

in the design of the H ∞ controller, then the closed-
loop system will be supplied with increased
robustness. Unlike this, if a value ρ ρ> min    is used

in the design of the H ∞  controller, then an

admissible stabilizing mini-max controller will be
derived but it will be a suboptimal one.

The Riccati equation  (3) is solved through spectral
factorization of the associate Hamiltonian matrix
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If [ , ]A B is stabilizable and [ , ]A C  detectable, then

the solution of the Riccati equation is a unique
positive semi-definite symmetric matrix P ,

P PT= ≥ 0 . A necessary condition for the solution
of the algebraic Ricatti equation to be a positive
semi-definite symmetric matrix is that H  has no
imaginary eigenvalues [3,4,5]. Therefore to
calculate a value of the parameter ρ  suitable for the

design of an H ∞ controller one has to verify that  :
i) the matrix H has no eigenvalues on the jω  axis

ii) the corresponding matrix P  is positive semi-
definite.

In this paper an algorithm based on fuzzy inference
is applied to determine the minimum value ρmin

and the associated matrix P  that satisfies the above
two conditions, thus resulting in an optimallly

designed H ∞ controller.

2.2. Fuzzy computation  of  the  parameter
ρ   of an  H∞ controller
The algorithm is based on the one  proposed by
Doyle et al. [3,4] . The novelty given in this paper is
the substantiation with the use of fuzzy inference.

Step 1 : Select a random initial value for ρ .

Step 2:  Calculate the eigenvalues of the matrix
H given by (5) and define the magnitude of the
permitted changes in the value of the parameter ρ .

Step 3: If  the matrix H has imaginary  eigenvalues
then ρ  should  be increased and the algorithm

should be repeated starting from Step 2 . If H does
not have any imaginary eigenvalue then the solution
P of the  Algebraic Ricatti Equation (ARE) (3)
must be calculated and the algorithm proceeds to
Step 4.
Step 4 : The solution  P of the ARE  is tested to
find out if it is positive semidefinite ( )P ≥ 0 . If  it is

not, the parameter ρ  should be further increased

and the algorithm must return to Step 2. On the



other hand if P ≥ 0  then the algorithm proceeds to
Step 5 .
Step 5 : If the absolute difference between the
current and the previous value of the parameter ρ
is greater than a small  positive constant ε > 0, then
the magnitude of the permitted changes of the values
of  ρ  is reduced , the parameter ρ  is decreased and

the algorithm returns to Step 2. Otherwise the
algorithm continues to Step 6 .
Step 6 : End .

The methodology  proposed in this paper can be
considered as a fuzzy-based modification of the
bisection technique.

The fuzzy search over ρ  :

To ensure that the parameter ρ  is increased with

the aid of the fuzzy inference , the following rules
are employed [6]:

    IF ρk R is  1   THEN  ρk R+1 is 2 , . . . ,

IF ρk R is  n-1   THEN  ρk nR+1 is                       (6)

where the index k indicates the k-th iteration of the
algorithm.
Similarly, to ensure that the parameter ρ   is

decreased  via the fuzzy inference the  rules that
must be used are :
    IF ρk R is  2   THEN  ρk R+1 is 1 ,. . . ,

IF ρk R is  n   THEN  ρk R+1 is n-1                       (7)

where R R R Rn1 2, , , n-1 ......,  are the fuzzy subsets in

which the fuzzy phase plane of the parameter ρ  is

divided.
In order to achieve convergence to the optimal
value ρmin  ,the smaller the distance from ρmin

becomes, the smaller the size of the incremental or
decremental changes of ρ   should be.  

To satisfy the above requirement , the width of the
membership functions should be modified at every
crossing over the optimal value ρmin . The last two

values of ρ , ρk −1  and  ρk , are taken into account,

where  : ρk −1  is the last value that produces a

matrix H  with imaginary eigenvalues and ρk   is the

last value that results in a matrix H without
imaginary eigenvalues  and for which the solution of
the algebraic Ricatti equation is a positive semi-
definite matrix P .
Recalling the conventional bisection method , the
optimal value ρmin should be searched in the range

[ ρk −1 , ρk ]. The new fuzzy subsets

R R R Rn1 2, , , n-1 ......,  correspond to the division of

the interval between  these two values [ ρk −1 , ρk ] in

n  equal segments.
The shrinkage of the fuzzy search interval
[ ρk −1 , ρk ] continues until the bounds ρk −1  and  ρk

practically coincide . Then  the optimal value γ min

will have been found.

.   .   .   .
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Fig. 1  (a) Fuzzy search over the universe of
discourse of the parameter ρ ,  (b) reduction of the

fuzzy sets’ width around the optimal value ρmin

and new search

3  The fuzzy H∞  control law for a class
of non-linear systems
The H ∞  control methodology can be extended to
nonlinear systems with non-fully measurable state
vector .The system is first subject to feedback
linearization with the use of an adaptive fuzzy
function approximator. The following n-th order
SISO dynamic system  is assumed :

d

dt
x f x x x g u d

n n^ ( ) ^ ^ ( )

( , ,..... , )
− • −

= + +•

1 1

          (8)

       y x=
where the scalar u is the control input and

x
^

=
• −

[ , , ]
^ ( )

x x x
n

T.....,
1

  is the non-fully measurable

state vector. The goal is to find the appropriate
control signal u that will get the state x  to track
track a time-varying setpoint

x x xd d d
T=

•
[ , , ]. . . . . , xd

(n -1)  .

The output tracking error is denoted by

e y yd= − .  The observation error is e x xo

^

= − .

Suppose that the system is free of external
disturbances and that a fuzzy system could



approximate, with infinite accuracy, the functions

f ( )x
^

, i.e. f f( ) ( )
^

x x
^

= , and  estimate correctly  the

missing state variable, i.e. x
^

= x  and e e
n

n
^ ( )

( )
−

−=
1

1 .
Then,  the control law

u
g

f xd
n= − + +

1
[ ( ) ]

^
( )x k e

^ ^

                            (9)

where e
^

=
− •

[ ,....., , ]
^ ( )

e e e
n 1

  and k k k kn n
T= −[ ,...., , ]1 1

results in the n-th order homogenous differential
equation

                e k e k en n
n

( ) ( ) .....+ + + =−
1

1 0 .

If the elements of  the vector k   are  selected  such
that the roots of the polynomial

s k s k sn n
n+ + + =−

1
1 0.....   are in the open  left-half

plane, then it is guaranteed that e →
→∞t

0 .

In the application of this nonlinear inverse model
control law three sources of error should be taken
into account. The  first is the noise caused by  the
external disturbances. The second is the
approximate inaccuracies of  the function f by the

fuzzy system. The third is due to the observation
error. The  aggregate error signal is denoted by w
and is assumed to be non-gaussian.  To eliminate the

impact of  w  a robust H ∞ control law will be
applied in addition to the above described inverse
model architecture. To assure the stability of the

closed-loop system the following H ∞ performance
index inequality has to be satisfied :

e e e e
^ ^ ^ ^TT T T

T
T

Q dt P r w wdt
0

2

0

0 0 0 0∫ ∫≤ + +( ) ( ) ( ) ( )
_ _

θ θ ρ         (10)

and additionally to show that x x
^

→
→∞t

 .

Theorem :
Consider the nonlinear system

x f x x x gn n u d( ) ( )( , ,....., )= +
•

− • +1                   (8)

where  f x x x n( , ,....., )( )
•

−1 is an unknown function ,

g is a known constant and d represents the external

disturbances. The state vector of the system is

x = [x,x x n 1
•

−,...., ]( )  and the state variable x n( )−1 is not

measurable .Using :
a)  a fuzzy-based state observer for the estimation of

the state variable x n( )−1 ,  i.e.

  x t f x x x g
n t n

u d
^ ( ) ^ ^ ( )

( ) [ ( , ,..... , ) ]
− • −

= +∫ •
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0
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 τ          (11)

where x
^ ^ ( )

[ , ,....., ]=
• −

x x x
n 1

 is the estimated state

vector and f x x x
n^ ^ ( )

( , ,....., )
• −1

is the estimate of

f x x x
n

( , ,...., )
^ ( )• −1

 found by an  adaptive fuzzy

system described by the parameters’ update
following relations :
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b)  the adaptive fuzzy H ∞  control law
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and P PT= > 0   is the solution of the Ricatti-like
equation

        PA A P Q
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then H ∞ tracking performance is achieved for the
closed-loop system .

Proof :
Introducing  the control law uc  in (8) the tracking

error dynamic equation of the closed-loop system is
derived

     e f f x u dn T
f a

( )
^ ^ ^

[ ( | ) ( )]= − + − + −k e x θ   , i.e.

e f f x u d e
n

T
f a of
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[ ( | ) ( )]= − + − + − +k e x θ             (18)



where e x xm= − ,  e x x
^

m= −
^

 and eof is the first

derivative of the observation error i.e.
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Equation (18) can be written in the form
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Ω f   is the  set of suitable bounds for θ f  ,

Ω
x
^   is the set of suitable bounds for  x

^

 and it is

assumed that θ f  and x
^

never reach the boundaries

of  Ω f   and Ω
x
^   

The minimum approximation  error is defined as

w f fe f
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consequently (20) becomes
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or equivalently in the form of state-space equations
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The following Lyapunov function is introduced

V P e
T

f
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Assumption 1 : The following assumptions are made
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dt
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dt
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which are reasonable if the rate of change of  x
^

 and
x is small (i.e. the system under control  has slow
dynamics).

Using Assumption 1 one gets
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Differentiating (21) yields
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The following equalities hold
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Introducing  (27) and (28) into (26) and after some
operations one finally gets
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which means that if    
1
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2
2e e
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TQ w w≥ ρ    then

V
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< 0 . Thus, the following conditions will hold
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The inequality  (29) can be written in a form that

satisfies the H ∞  tracking performance criterion .
Integrating in the interval [ , ]0 T yields
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This is the H ∞ tracking performance condition
sought.

Remark  :  The critical point in the proof  of the H ∞

tracking behavior is Assumption 1 which implies
that the system’s dynamics are slow enough (all the
components in the system dynamics show slower
variations with respect to the loop sampling speed)
and thus the randomly initialized fuzzy system can
follow the changes of f .
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Fig. 2 The   observer-based adaptive fuzzy

H∞ control architecture

4 Simulation results

4.1. The control problem of a dc-motor
The transfer-function of the dc-motor is given by

θ
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where K K Rf f= / β , and τ f f fL R= / ,

τ βm J= /   are time constants.  The corresponding

state-space equations are
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where θm  is the angular position , ωm  is the angular

speed and γ m  is the angular acceleration.  However

under normal operation conditions some of the
parameters of the above motor model , specifically
the moment of inertia J or the friction coefficient
β  are not known or can be time varying.  Thus a

robust control scheme is required in order to
compensate this parametric uncertainty.
The above model can be viewed as a sub-case of the
general nonlinear model :

x f x x x g x x x u dn n n( ) ( ) ( )( , ,....., ) ( , ,....., )= + +
•

−
•

− •
1 1

y x=
 where



i)  f  is an unknown but bounded  function ,and

ii) g is the system’s gain which is assumed to be a

known constant (or , equivalently it is assumed that
the uncertainty concerning  g is included in

disturbance term d ) .
Furthermore it is assumed that the last  state
variable γ m  of the motor model is not directly

measurable,    whereas the second state variable ωm

can be calculated via the derivative ω
θ

m
md

dt
≈ .

Therefore the problem reduces to that of controlling
the system

             
d

dt
x f x x x g u d

n n^ ( ) ^ ( )

( , ,..... , )
− • −

= + +•

1 1

,

y x=                                                        (8)

Thus, the adaptive fuzzy H ∞  control methodology
developed for  systems described by  (6) can also be
applied to control the dc-motor.

4.2.  Simulation tests

The simulation code was written in C++. The fuzzy
rules of the fuzzy approximator are of the form  :

          IF x  is PS AND x
•

 is NS and x
••

 is NS

         THEN f
^

 is G i

where  G i  is one of the fuzzy subsets in which the
output universe of discourse is divided,  i.e.

{NL,NM,NS,ZE,PS,PM,PL}* . All G i s are
initially chosen to be ZE (zero) and through the
adaptation phase the fuzzy system finds the

appropriate G i s for each rule. Each variable in the
antecedent part of the rule is analyzed in three fuzzy
subsets. Taking all the possible combinations
between  the input fuzzy sets, 27 rules are derived.
The solution of the algebraic Ricatti equation for the
calculation of the matrix P was done with the use of
Matlab’s  aresolv( ) function. The matrix Q   was

selected to be the unity matrix I3 . The learning rate

of the adaptive fuzzy system was set toγ 1 01= .   and

the parameter r in the Ricatti equation was set equal
to 1. To increase the system’s  robustness the fuzzy
inference-based algorithm described in Section 2.2
was used and the resulting ρ   was found to be

1.1312 . The random choice of the parameters  γ 1

and r might cause intensive oscillations at the first
                                                       
* NL = Negative Large, PS = Positive Small , etc.

stages of the training process.  To minimize this
effect, the selection of the above parameters by the
application of genetic algorithms can be useful .
The first setpoint function used in the simulations
was the sinusoidal signal
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Fig. 3 Tracking of a sinusoidal setpoint  by output y
(solid line: actual value, dashed line: reference )
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Fig. 7     The control signal  u

The simulations tests  showed a very satisfactory
trajectory tracking (see Fig. 3) . The control signal
and state variables fluctuation was  quite smooth
except from the initial stage of  adaptation (see Fig.
5-7).  However this is normal because no prior
information about the plant’s model was taken into
account in the initialization of the fuzzy rule base.

5  Conclusions
In this study the control of a class of nonlinear
systems was examined, namely.

           x f x x x g u dn
n

( )
^ ( )

( , ,..., )= + +
• −

•

1

Furthermore the last state of the state vector

( , ,....., )( )x x x n
•

−1  was assumed not directly

accessible and had to be reconstructed  via a state
observer. The observer used is of  the integral type

          x t f x x x g
n t n

u d
^ ( ) ^ ^ ( )

( ) [ ( , ,..., ) ]
− • −

= +∫ •

1

0

1

τ

where the  approximation f
^

 of the function f  is

produced by an adaptive fuzzy system. Using
Lyapunov’s stability theory,  under the assumption
that the plant has slow dynamics , it was shown that
the closed-loop system (which consists of the plant,

the adaptive fuzzy H ∞ controller and the state

observer) satisfies the H ∞ tracking condition.

Additionally, an algorithm based on fuzzy logic was
developed for the selection of the optimal

H ∞ controller . The algorithm performs a fuzzy
search to find the  value of the attenuation level ρ
that provides the maximum robustness.
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