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1   Introduction
Because of the increasing demands on reliability and
safety of complex technological systems and their
elements, methods for improving the supervision and
monitoring as a part of the overall control of the
processes are getting an increasing interest. The
problem of diagnosis and correction of measurement
errors in dynamic data provided from continuous
process is important for the correct control and
operation of the complex systems [1], [4], [6]. As a
result a smooth management and dynamic operation
of the plant can be achieved. Process measurements
may contain (i) random errors, normally introduced
by the instrumentation systems; (ii) gross errors,
caused by different external forces interfering with
the system; (iii) systematic errors, usually caused by
improper operation or incorrect adjustment of the
measuring instruments. These errors make raw
measured data show discrepancies in fundamental
physical laws.
The incorrect usage of the local balances may leed to
serious difficulties in the integrated  system
operation. This is due to the impossibility to realise
optimal process scheduling or adequate operational
actions in the presence of considerable internal and

external disturbances [4], [6]. The modern complex
production systems consist several scores of
technological units, connected by feedforward
meterial streams and recycles. There are many
material as well energy invertors of different types
and construction. The technological units themselves
(reactors, distilation couloms, absorbers etc.) are
accumulators of mass end energy. Special buffer
tanks are provided for to relieve the mass flows
control. The mass and energy balances control is a
considerable part of the integrated control of the
plant-wide, which is formed at the higher
hierarchical levels [4]. The range of each local
balance may be quite different and it is defined of the
general strategy of the coordinated control.
In this study the local balances are described on the
base of generalized models, which include the direct
and indirect measurements of inlet and outlet streams
parameters (flow rate, temperature, pressure), as well
the state parameters of the technological units and
equipment, where mass and energy are accumulated.
The usual steady-state approach for estimation of the mass
balances and the measurements correction [2], [3], [8], [9]
in the most of the cases is insufficient precise for the
operational control of the balances because of dynamical
errors. Due to the various temporal scale of the
subsystems, different requirements for reconciliation and
control of the local balances are created. Some approaches



for dynamical diagnosis and data reconcilation, which add
and replace the statical ones are proposed below. A
modification of Fuzzy Logic-Based diagnosis and
data reconciliation method [8], created for steady-
state mode to be applied for dynamic modes of
complex technological systems is presented.

2   Statement of the Problems
Several modes of operation are possible in the
complex integrated manufacturing systems (Fig. 1):

a) Steady-state or close to it regime with
small random deviations of the thrue values of the
technological parameters and lack of accumulation in
the units.

b) Change of the operational point of a part
or all of the units due to the supervision control
signals of scheduling system or unforeseen
operational actions.

c) Regimes of considerable changes in the
technological mode – change of technological
structure (switch-on, shut-down, malfunctions).

Fig. 1. Integrated production system

The existing methods for steady-state diagnosis and
data reconciliation [2], [3], [8], [9] can not operate in
the conditions of wide-spread considerable
technological disturbances into the whole system.
Dynamic diagnosis and correction of the
measurements must be performed in the case of
unsteady-state behavior of the systems [1]. Dynamic
data reconciliation is closely related to the field of
nonlinear state estimation. The solution of the
dynamic data reconciliation problem using a
complex sequential-modular model generally is a
difficult problem. An approach for solving this
problem is to exploit the modular structure of the
models and to use different data reconciliation
algorithms for each type of module [1]. Several
dynamic data reconciliation methods have been
proposed for the equation oriented case [5], [7].

The next task is formulated: The problems of fault
measurement diagnosis and data reconciliation in
steady-state and dynamic modes of the process
operation, using generalized approach must be
solved.
Let us assume that the continuous industrial system
under investigation consists of m units and n streams.
The index set I = {1, 2, ..., m} represents the units
numbers of the technological system. Similarly  J =
{1, 2, ..., n} is the index set containing the streams
numbers.

 Material balance
In dynamic operation of the system the following
mass balance equations hold:
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where:
i – density of the fluid [kg/m3];
Vi(t) [m3] is the increment of the accumulated

volume (tank, vessel, part of unit) and is defined as
Vi(t) = V(t) – V(t0) (t0, t – initial and current time

[s]);
a

ij
 are the coefficients of the (m x n) - dimensioned

Incidence Matrix A with elements as follows:
a

ij
 = +1, if  j  is an inlet stream for unit i;

a
ij
 = -1, if j  is an outlet stream for unit i;

a
ij
 = 0, if the j-th stream is not connected to

the i-th unit;
Fj(t) [kg/s] is the flow rate of the j-th stream at the
moment t.
Usually the volume increment V could be presented
as follows:

Vi(t) = i Li(t), (2)
where:

i – cross-section of the i-th accumulator, [m2];
Li(t) is the level increment of the i-th unit at

moment t and is calculated as:
Li(t) = Li(t) – Li(t0) (3)

The liquid level into the i-th accumulator is
measurable, [m].
In more complicated cases nonlinear equation should
be used instead of the linear one (2):

Vi(t) = fi( Li(t)). (4)
To eliminate the stochastic disturbances, integration
of the mass flow rate measurements Fj(t) is suitable
during the interval tf. Equation (1) could be presented
in the following form:
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We denote the j-th integral flow rate Gj(tf), [kg] as:
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Equation (5) could be presented in the form:
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If we assume that only r units are accumulators and
taking account (2), equation (7) could be presented as
a function of measurable (directly or indirectly)
variables:
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di = i I - known parameter for the i-th accumulator.

 Heat balance
The dynamic heat balance equation of every unit
may be described by:
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where:
ci – specific heat of the fluid in the i-th unit,
[kJ/kgK];

(t) – temperature into the i-th unit at moment t, [K];
cj – specific heat of j-th stream, [kJ/kgK];

j(t) – temperature of j-th stream at moment t, [K];
qi(t) – intensity of heat generation in i-th unit
(accumulator) due to external heating chemical
reaction at moment t, [kJ/s].
Following the same way as above we have:
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Equation (11) has another representation,
substituting (2) and (9):
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where:
gi = dici; (14)

Si(t) = (V(t) (t))i. (15)

3   Error Correction
Statement of the problem of the measurement error
correction is described below. Further, we will deal
with the solving of the data reconciliation problem,
based on the mass balance.
As it was assumed above the continuous industrial
system consists of m units and n streams. The index
set I = {1, 2, ..., m} represents the units numbers
(each of the unit volume or level is measured) and
the numbers of the mass balance equations 

i
, (i  I)

for the system. Similarly  J = {1, 2, ..., n} is the
index set containing the streams numbers, each of
them being measured as a total or component mass
flow rate F

j
, j  J. The measuring instruments for F

j

and Li have the same numbers in  J and I. The index
set R is defined as R = J  I.
If all the flow rates F

j
, j  J and all the levels Li, i  I

are  measured by respective measuring instruments or
in some other way, then from a balance point of view
all F

j
 and Li are called over determined balance

parameters. It is assumed that the measurements are
taken in discrete samples with a sampling time Tf.
However, instead of their exact values, the values

F
j

*
(tk) and LI

*(tk) (k is an integer sampling index)

including measurement errors ej(tk) and i(tk) are
measured (observed) as follows :

Fj
*(tk) = Fj(tk) + ej(tk) , j  J; (16)

Li
*(tk) = Li(tk) + i(tk),  i  I. (17)

 The errors ej(tk) , (j  J) and i(tk), (i  I) can be
either gross or systematic errors. Further we assume
long time acting errors refereed to as systematic
errors. From statistical viewpoint they can be
regarded as random variables having a normal
distribution with a standard deviation 

r
, (r  R) and

unknown but non zero mean e
j

o
 and 

i

o
.

Taking into account the definitions in the previous
section, in dynamic operation of the system the
material balance equations (8) may be obtained. The
integral flow rates Gi(tf), j  J, for the interval tf will
be used in the next consideration instead the
measurement flow rates Fj

*(tk), j  J, at the moment
tk. The relationships of the integral flow rates Gi(tf), j

 J, and the measurement flow rates Fj
*(t), j  J,

could be presented as follows:
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where:
Gj1(tf) is the true value of the integral flow rate of the
j-th stream;



Gj2(tf) is the error estimation of the integral flow rate
of the j-th stream and will be obtained from the
solving of the data reconciliation problem, that is
given below.
In the proposed Soft Computing Method in [8] the
assumption for the faulty status of each instrument is
made in a fuzzy manner as an n+m-dimensional
vector called Hypothesis Pattern H = { h

1
, h

2
, ... h

r
,

... , h
n+m

}, where 0  h
r
  1, r  R  represents the

preliminary assumed faulty degree of each
measuring instrument.
By introducing the Lagrange multipliers 

i
 and i, i

 I, the problem of dynamic data reconciliation is
transformed into solving the following (2m+n) x
(2m+n) system of linear equations :
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where:
xr, r  R are the relative errors;
cij, bi

F, bi
L and i are normalized coefficients of the

balance equation system (8) calculated as follows:
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The diagnosis of measurement errors can be
performed as n+m-dimensional non-linear
optimization task where the vector H represents one
feasible point in the searching procedure. The
following performance index  is proposed to be used:

Q K h h xr r
r R

r r
r R

( )1 (26)

The coefficient K is introduced as a kind of penalty
for wrong guesses of the numbers of the faulty
instruments. Its value is selected in a subjective way,
but is advised to be more than the maximal expected
systematic error. Thus the criterion (26) favors the
diagnosing solutions having smaller possible number
of faulty instruments.
Due to existence of many equivalent solutions [2],
[8], the above criterion (26) represents  a
multiextremal function. Then a respective method of
finding a limited number of equivalent solutions with

a given threshold  would be very useful from a
practical point of view.

4   Data Preparation for the Diagnosis
Procedure and Data Reconciliation
Due to the interconnections in complex systems, the
different temporal behavior of separate units and the
measurement errors it is necessary to be provided
with:
- a synchronization of the data, which are used in

equations system (8);
- a data filtration for decreasing of the random

errors in the measurable or inferable variables;
- a robust estimation of the mass accumulation.
In this connection, it is reasonable the technological
units to be conditionaly divided in «fast» and «slow»
units. It is assumed all of the units, which have own
frequency at least three times greater than that one of
the «slowest» unit, to be called «fast» ones [6]. As
the «slow» units generate input signals with low
frequency spectrum, it is advisable to be used
different algorithms for data preparation of «fast»
and «slow» variables and «fast» and «slow»
technological nodes. The «slow» technological units
and variables are setting for the data
synchronization.

A) «Slow» units
A steady-state test verification of the input and
output variables is performed. If a steady-state
situation is exist, the values of the input and output
variables are mean, using moving average method:

v t
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The derivatives in the left part of equations (1) and
(10) for the accumulation estimation are defined on
this basis.
If an unsteady-state situation is exist, the next
sequence is applied:
- filtering of the input and output data by means of

a low order filter;
- estimation of a consequence of the accumulated

mass.
B) «Fast» units

A moving average method is used for the data
filtration by obtaining massives of average data at
each moment of time, defined by the «slow» units.
It should be noted, the steady-state of the input and
output signals doesn’t guarantee a steady-state of the
accumulated mass in them, due to the integrating
properties of the tanks, receivers and gas-holders.
Because of that the usage of the dynamic balance
equations is obligatory.



The accumulating components in (1) and (10) should
be presented in the terms of measurable variables –
level, pressure and temperature. Their values
calculating can be accomplished as follows:
- through direct approximately setting of the

derivatives in the left part of equations (1) and
(10) on the basis of the filtrated input and output
variables;

- on the basis of the mathematical models, if such
ones exist, of the correspondent units;

- combined usage of both of the above
approaches.

5   Diagnostic Procedures
In the followings  a simple heuristic method of
finding equivalent solutions for the fault diagnosis
procedure is proposed. It uses random search
technique where a preliminary given number of  P
random  Hypothesis Patterns (vectors) is generated.
The main steps of this optimization method are as
follows:
1. Generate randomly the current Hypothesis Pattern
(vector)  H

p
 = { h

1
, h

2
, ... h

r
, ... h

n+m
}, (1  p  P);

2. Perform the modified measurement correction
procedure (19), (20) and (21) for the generated vector
Hp. Calculate the respective relative errors  xr, r  R.

3. Fuzzify the relative errors x
r obtained, according to

the maximum expected value x
rmax

 as a deviation

from the normal (true) case [8]. As a result the vector
S

q
 = {s

1
, s

2
, ..., sr, ..., sn+m

}  is obtained.

4. By using the C-means algorithm for cluster
analysis [8] divide the elements in H

p as well as the

elements in S
p
 into 2 crisp clusters representing true

and faulty measurements. Then the measurements
defined as clearly faulty  in both vectors H

p and S
p

form the  respective clusters C
H
  and  C

S
. Here  C

H

represents the hypothesis for faulty instruments
while C

S
 is the calculated faulty status of the

instruments.
5. Check the feasibility of the current  hypothesis
H

q
.  If  C

S
  C

H
 then a conclusion that  C

S
 is a

candidate solution is made. Otherwise Go to Step 7.
6. Calculate performance index Q for the current
candidate solution C

S according to (26). If  Q  Q
min

+ , (Q
min is the current minimal obtained value)

then this candidate solution is  called equivalent
candidate solution and it is saved, otherwise it is
discarded.
7. If p  P Go to Step 1;  otherwise Stop.

The next specific characteristics of the dynamic fault
measurement diagnosis and data reconciliation can
be noted:
1. At the difference of the steady-state approach in
this case additional variables are included, which are
connected to the state behavior of the technological
nodes – such as a level of the tanks and units, a
pressure, a temperature. In such way the number of
the parameters, which have to be diagnosed,
increases.
2. Due to the estimation inaccuracy of the mass and
energy accumulation it is necessary a frequent
repetition of the diagnostic procedures performance
to be carry out at all the same hypotheses of the fault
measurement (Fig. 2). This puts on the most
computationally efficient algorithms to be used in the
procedures of dynamic diagnosis and data
reconciliation.

Fig. 2. Diagnostic procedure

6 Application and Analysis of the
Results
This section shows the principal possibility of real
application of the above proposed Soft Computing
Method for diagnosis and dynamic correction of the
measurements of mass flow rates and levels in real
plants with complex structure. In Fig. 3 the structure
of one subsystem of a plant for production of
ammonia (NH

3
) is presented. The main goal of this

subsystem is to remove the contained CO gas in the
so called process gas. There are 10 technological
units, as follows:  No. 1 and 2 are converters where
CO is converted into CO

2
; No. 3 is reactor for

oxidation of CO into CO
2; No. 5 is a separator; No.

6 is a column for absorption of CO
2
; No. 8 and 9 are

Desorption columns where the process solution is
regenerated. All of the mass flow rates Fj, j = 1,…,
22 as well as the levels of the units No. No. 5, 6, 8, 9
are measured.
The number of assumed faulty measurements in this
example is 4. They are  denoted as bold streams in
Fig. 3 as follows: F

5
, F

6
, F

12 and  F15
.

k
k+1

k+n

H
H

H
H

1

2

p

P

dynamic data sets Hypothesis Patterns



Fig. 3. Structure of a subsystem of a
plant for production of ammonia

(NH3)

Applying the above described Soft Computing
Method for diagnosis of faulty instruments, two
equivalent candidate solutions have been found and
shown in Fig. 4.  They are obtained within a
relatively small number of random generated
Hypothesis Vectors ( P = 150) for a threshold   =
200. The real solution F

5
, F

6
, F

12 and  F
15

  is also

among them. In Fig. 4 Series 1 denotes the
hypothesis vector Hp and Series 2 denotes the
candidate solution Sp. The cluster CH of faulty
instruments for the hypothesis vector and the cluster
CS of the faulty instruments for the candidate
solution are presented too. Performance index Q is
also depicted in Fig. 4 together with the number of
iteration It for each candidate solution obtained.

It = 67; Q = 958.7;
CH = {1, 4, 5, 8, 10, 11, 13, 15, 16, 18};

CS = {5, 8, 13, 15, 16}

a)

It = 106; Q = 793.4;
CH = {4, 5, 6, 8, 10, 12, 15, 17, 18, 20};

CS = {5, 6, 12, 15}

b)

Fig. 4. Equivalent candidate
solutions in diagnosing

measurement errors

By increasing the number P of random generated
hypothesis vectors Hp more equivalent candidate
solutions can be found within the given threshold .
By decreasing the threshold candidate solutions with
smaller number of faulty instruments is obtained.
Finally an additional analysis of the plausibility of
the solution obtained is needed taking into account
some other data or knowledge for the system under
investigation.

7   Conclusions
In this paper diagnosis procedure and dynamic data
reconciliation method, based on the mass and energy
balances in complex technological systems have
been presented. At the distinction of the steady-state
approach in this case additional variables are
included, which are connected to the state behavior
of the technological nodes. An optimization method
of finding equivalent solutions for the fault diagnosis
procedure has been developed. In the proposed Soft
Computing Method the faulty status of each
instrument is made in a fuzzy manner as a
Hypothesis Pattern represents the preliminary
assumed faulty degree of each measuring
instrument.
An extensive analysis and evaluation of the methods
proposed have shown their ability to be implemented
into distributed industrial control systems for real
time measurement correction and diagnosis.
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