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Abstract: - In science and engineering, knowledge about dynamic systems may be represented in several ways.
The models are normally composed of quantitative, qualitative, and semiqualitative knowledge. All this
knowledge should be taken into account when we study these models.
    Different approximations have been developed when qualitative knowledge is taken into account:
transformation of non-linear to piecewise linear relationships, MonteCarlo method, distributions of probability,
causal relations, fuzzy sets, constraint logic programming, and combination of all levels of qualitative and
quantitative abstraction.
    In this paper, a new methodology for reasoning about dynamic systems with qualitative knowledge is
proposed, This qualitative knowledge may be composed of: qualitative operators, envelope functions, qualitative
labels and qualitative continuous functions. The formalism to incorporate this qualitative information into these
systems is shown.   
    The main idea of the methodology follows: when a semiqualitative model is transformed into a set of
quantitative models, every quantitative model has a different quantitative behaviour, however, together, they
may have similar qualitative behaviours.
    A brief description of the proposed methodology follows: a semiqualitative model is transformed into a set of
quantitative models. The simulation of every quantitative model generates a trajectory in the phase space. A
database is obtained with these quantitative behaviours. It is proposed a language to carry out queries about the
qualitative properties of this database of trajectories. This language is also intended to classify the different
qualitative behaviours of our model. This classification helps us to describe the semiqualitative behaviour of a
system by means of hierarchical rules obtained by means of machine learning.
    A theoretical study about the reliability of the obtained conclusions with the methodology is carried out.
    In this paper, the methodology is applied to a logistic growth model with a delay. The evolution of bacteria,
mineral extraction, world population growth, epidemics, rumours, economic developments, or learning curves
are real-world systems whose behaviour patterns are closely related to a logistic growth.
    The methodology will be applied in a real computer-controlled process. It is a production industrial system. A
metallurgical Company is interested in modifying its steel control production system applying this methodology.
They wish to improve the steel quality, and, if possible, reduce the production costs. This collaboration is now in
a preliminary phase. In forthcoming papers, we will describe this system in detail and the conclusions we shall
obtain.
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1   Introduction
In science and engineering, models of dynamic
systems are normally composed of quantitative,
qualitative, and semiqualitative knowledge. All this
knowledge should be taken into account when we
study these models. Different levels of numeric
abstraction have been considered in the literature.
They may be a description: purely qualitative [4],
semiqualitative[3], [5], numeric interval [7] and quan-

titative.
   Different approximations have been developed in
the literature when qualitative knowledge is taken into
account: transformation of non-linear to piecewise
linear relationships, MonteCarlo method, constraint
logic programming, probability distributions, causal
relations, fuzzy sets, and combination of all levels of
qualitative and quantitative abstraction [2], [3].
   We study dynamic systems with qualitative
knowledge. The proposed methodology transforms a



semiqualitative model into a family of quantitative
models. A semiqualitative model may be composed
of qualitative knowledge, arithmetic and relational
operators, predefined functions (ln,exp,sen,...),
numbers and intervals.

2  The methodology
There is enough bibliography that studies stationary
states, however, the study of transient states is also
necessary. For example, it is very important in
production industrial systems in order to optimise
their efficiency. Both states of a semiqualitative
dynamic system may be studied with the proposed
methodology. The methodology is shown in Fig. 1.

Starting from a dynamic system with qualitative
knowledge, a semiqualitative model S is obtained. A
semiqualitative model S is represented by
           (dx/dt,x,q,t),  x(t0) = x0,  0(q,x0)             (1)

being x   
n
 the set of state variables of the system,

q the parameters, t the time, dx/dt the variation of the
state variables with the time, 0  constraints with the
initial conditions, and  constraints on dx/dt,x,q,t.
    If the methodology is applied, the equations of the
dynamic system (1) will be transformed into a set of
constraints among variables, parameters and intervals.
In this paper, we are interested in those systems that
may be expressed as (2) after transformation rules
have been applied
      dx/dt = f(x,p,t),  x(t0) = x0,  p  Ip,  x0  I0       (2)
where p includes the parameters of the system and
new parameters obtained by means of the
transformation rules, f is a function obtained by
applying the transformation rules, and Ip,I0 are real
intervals. The equation (2) is a family F of dynamic

systems depending on p and x0.
    A family of quantitative models F is obtained from
S by applying some transformation techniques.
    Stochastic techniques are applied to choose a
model M  F. This model M is quantitatively
simulated obtaining a trajectory. It contains the set of
values of all variables from their initial value until
their final value, and the values of the parameters.
Therefore, it contains the values of these variables in
the transient and stationary states of the system. A
database of quantitative trajectories T with these
quantitative behaviours is obtained. A language is
proposed in order to carry out queries about the
qualitative properties of the set of trajectories
included in the database. These trajectories may also
be classified according to some criteria, and then, a
labelled database is obtained. Qualitative behaviour
patterns of the system may be automatically obtained
from this database by applying machine learning
based on genetic algorithms.
    In the following sections, we are going to describe
the steps of the methodology in detail.

3  Qualitative knowledge
Our attention is focused in those dynamic systems
where there may be qualitative knowledge in their
parameters, initial conditions and/or vector field.
They constitute the semiqualitative differential
equations of the system.
   The representation of the qualitative knowledge is
carried out by means of operators which have
associated real intervals. The main advantage of this
representation is that the integration of qualitative and
quantitative knowledge is made in a simple way, and
also facilitates the incorporation of expert knowledge
in the definition of the range of the variables and the
qualitative parameters of the system  [2].
   Qualitative knowledge may be composed of
qualitative operators, qualitative labels, envelope
functions and qualitative continuous functions. They
and their transformation techniques are now detailed.

3.1  Qualitative operators
The representation of qualitative parameters and
initial conditions is carried out by means of
qualitative operators. Every qualitative operator op is
defined by means of an interval Iop which is supplied
by the experts. They may be unary U and binary B
operators.
   Each qualitative magnitude of the system has its
own unary operators. Let Ux be the unary operators
for a qualitative variable x, i.e. Ux={VNx, MNx, LNx,
AP0x,LPx,MPx,VPx }. They denote for x the qualitative
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labels very negative, moderately negative, slightly
negative, approximately zero, slightly positive,
moderately positive, very positive respectively. The
transformation rule for a unary operator is

          opu(e)  {r  Iu ,  e  r = 0               (3)
being r a new generated variable and Iu the interval
associated with operator opu. It is stablished in
accordance with [6].
   Let e1,e2 be two arithmetic expressions, and let opb

be a binary operator. The expression opb(e1,e2)
denotes a qualitative order relationship between e1

and e2. Binary qualitative operators are classified into
 Operators related with the difference  ,=,  . The

following transformation rules are applied
e1 = e2   { e1 e2=0
e1  e2   { e1 e2  r=0,  r  [  ,0]          (4)
e1  e2   { e1 e2  r=0,  r  [0,+ ]

 Operators related with the quotient {«, <,~, ,»,Vo,
Ne,...}. The following transformation rule is applied

opb(e1,e2)  {e1 e2*r=0 ,  r  Ib                     (5)
where Ib is the interval associated to operator opb in
accordance with [6].

3.2  Envelope Functions
An envelope function y=g(x) (Fig. 2.a) represents the
family of functions included between two defined real
functions, a upper one U:       and a lower one
L:   . It is denoted by means of
         L(x),U(x),I ,   x  I: L(x)  U(x)        (6)
where I is the definition domain of g, and x is the
independent variable. The transformation rule applied
to (6) is
      g(x) =  L(x) + (1  ) U(x) with   [0,1]    (7)
where  is a new variable. If =0  g(x)=U(x) and if

=1  g(x)=L(x) and any other value of  in (0,1)
stands for any included value between L(x) and U(x).
3.3  Qualitative continuous functions
A qualitative continuous function y=h(x) (Fig. 2.b)
represents a constraint involving the values of y and x
according to the properties of h. It is denoted by
            y=h(x),  h  {P1,s1,P2,,..,.sk 1,Pk}                (8)
being Pi the points of the function. Every Pi is defined

by a  couple (di,ei), being di the associated qualitative
landmark to the variable x  and ei  to y. These points
are separated by the sign si of  the derivative in the
interval between two consecutive points. A
monotonous qualitative function is a particular case
where the sign is always the same s1=... =sk 1.
   The qualitative interpretation (Fig. 3.a) for every
Pi=(di,ei) of y=h(x) is
    if  x=di  y=ei               si=+  ei < y <ei+1

    if  di < x <di+1       si=   ei > y >ei+1            (9)
                        si=0   y=ei

The transformation rules of a qualitative continuous
function are applied in three steps:

3.3.1 Normalization
The definition of the function is completed and
homogenised using these continuity properties:
1. a function that changes, its sign between two

consecutive landmarks passes through a
landmark whose value in the function is zero

2. a function whose derivative changes, its sign
between two consecutive landmarks passes
through a landmark whose derivative is zero

The definition of any function (8) is always
completed with: the extreme points ( , + ), the
points that denote the cut points with the axes, and
where the sign of the derivative changes (a maximum
or a minimum of h). New landmarks dj,ej keep an
order relationship with the old ones (Fig. 3.b).

3.3.2  Extension
The definition of these functions is enriched by means
of an automatic process. It  incorporates new land-
marks. We make it in order to dimish the uncertainty
since the area of the rectangle is reduced (Fig. 3.b).

3.3.3  Transformation
A qualitative function
y=h(x), h  {P1,s1,P2, ...sk 1,Pk }  with Pi=(di,ei)  (10)
is transformed into a set of quantitative functions H.
The algorithm Choose H is applied to obtain H. It
divides h into its segments. A segment is a sequence
of consecutive points {Pm,...,Pn} separated by means
of those points whose landmark ei=0 or where si  si+1.

y
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The segments divide a function into monotonous
regions where the landmarks ei have the same sign.
The algorithm applies stochastic techniques to choose
every quantitative function of H. These techniques are
similar to MonteCarlo method, however, the values
obtained must satisfy the constraints of h. The
followed heuristic applies a random uniform
distribution to obtain the values for every landmark.
The obtained values must verify the order relationship
among their own landmarks.

4  Database generation
A family F of quantitative models has been obtained
when the transformation rules have been applied to
the semiqualitative model S. This family depends on a
set of  interval parameters p and functions H defined
by means of a set of quantitative points. Every
particular model M of F is selected by means of
stochastic techniques, and it is quantitatively
simulated. This simulation generates a trajectory r
that is stored into the database T.
   The following algorithms are applied to obtain T.
   

   

being N the number of simulations to be carried out. It
is defined in accordance with the section 7. Therefore,
N is the number of trajectories of T.

5  Query/classification language
In this section, we propose a language to carry out
queries on the trajectories database. The language is
enriched with the ability to assign qualitative labels to
the trajectories.

5.1  Abstract Syntax
Let T be the set of all trajectories r stored in the
database. A query Q is: a quantifier operator , ,
applied on T, or a basic query [r,P] that evaluates true
when the trajectory r verifies the property P.
   The property P may be formulated by means of the
composition of other properties using the Boolean

operators , , .
    Q :   r  T  [r,P]     P:  Pb           Pb:  Pd

        |   r  T  [r,P]        | P  P           |   f(L(F))
        |   r  T  [r,P]       | P   P           |    t:F  F
        |   [r,p]                       |   P             |    t:F  F

A basic property Pb may be: a predefined property Pd,
a Boolean function f applied to a list L of points or
intervals that verifies the formula F, or a quantifier

,   applied to the values of a particular trajectory for
a time t. This time may be: an instant of time, a unary
time operator (i.e. a range of time), a predefined time
landmark, or the list of times where the formula F is
verified.
   A defined property Pd is the one whose formulation
is automatic. They are queries commonly used in
dynamic systems. There are two predefined: EQ is
verified when the trajectory ends up in a stable
equilibrium; and CL when it ends up in a cycle limit.
        Pd:  EQ        F:   Fb              Fb:  eb                
           |    CL          |  F & F             |  e  I
                               |  F | F               |  u(e)
                               |  ! F                  | b(e,e)

A formula F may be composed of other formulas
combined by means of Boolean operators  &,|,!.
   A basic formula Fb may be: a Boolean expression
eb, or if a numeric expression e belongs to an interval,
or a unary u or binary b qualitative operator.

Classification
A classification rule is formulated as a set of basic
queries with labels, and possibly other expressions
[r,PA]  A,en1,...  [r,Pb]  B,en2},...  ...

A trajectory r is classified with a label  if it verifies
the property P .

5.2  Semantics
The semantics of every instruction of this language is
translated into a query  on the database. A query [r,P]
is true when trajectory r verifies the property P.
Semantics of a query with a quantifier depends on its
related quantifier. If it is , a Boolean value true is
returned when all the trajectories r  T verify P. If it
is  then true is returned when there is at least one
trajectory r  T that verifies the property P. If it is 
then it is returned the number of trajectories of T that
verifies P.
   Let  t: F1  F2 be a basic property which is true if
during the time that F1 is satisfied, all the values of r
verify F2. For  quantifier is true when at least a value
of r that satisfies F1, also satisfied F2. In order to
evaluate a formula F, it is necessary to substitute its



variables for their values. These values are obtained
from T.
   Let [r,PA]  A,eA1 be a classification rule. A
trajectory r  T is classified with the label A if it
verifies property PA. The result of evaluating eA1 for
this trajectory is also stored into the database.

6  Theoretical study of the conclusions
When we claim "there is a behaviour of the system
that verifies the property P" or "all behaviours of the
system verify the property P", a question appears: are
the obtained conclusions applicable to the real
system? Its answer is proposed in this section.
   The question to solve is: what is the necessary
condition to secure that all the behaviours of the
system verify a property P?.

Let  be the trajectories space of the system, an let 
be the space of those trajectories of  that verify P
(Fig. 4). Let Vol(s) be the volume of a space s. We are
interested in knowing what is the condition that
should be verified in order to secure that
Vol( )=Vol( )?.  In a schematic way, this question
may be arise as  what is the condition to secure that
the next implication is true

being  the confidence degree. Statistical techniques
are necessary to carry out this implication.
    Let p be the probability that a trajectory r verifies a
property Q and q=1 p
                           p=Vol( )/Vol( )                       (12)
Let x be a random variable. For n trajectories the
value x is n if the n 1 first trajectories verifies Q, and
the n th does not.
   Let  be the confidence degree. The expression
                               =P(x>n)                              (13)
is the probability that the n first trajectories verify Q
and there is a trajectory that does not verify Q among
the rest of trajectories of .
  Theorem: The probability p verifies that
                                      p  1  1 / (n )                (14)
Proof:
The expected value E[x] of a random variable x is
defined as follows

        E[x]=
 

n=1

   
n p

n 1
q = q/p 

 

n=1

   
n p

n

if it is replaced the geometric sum by its values

                  E[x]=q/p * p/(1 p)
2
=1/(1 p)            (15)

On the other hand, the Chevyshev inequality follows

      E[x]=
 

x=1

 
xp(x)  

 

x=n+1

  
np

n 1
 = nP(x>n)

if E[x] is substituted by its value  in (15), and if it is
applied (13), we obtain
       E[x]/n   P(x>n)  1/(n(1 p))   P(x>n)=
by means of symbolic manipulation the theorem is
proved
                  1/n   1 p  p  1 1/(n )                  ¨

This theorem proves that: given an confidence degree
, if we want to ensure that a property P is true for a

dynamic system with a probability p, it is necessary to
obtain at least n trajectories verifying it.
  Next table shows several examples for p and n being

=0.05 and =0.01
=0.05 =0.01

p=0.6
p=0.8
p=0.98
p=0.998

n=50
n=100
n=1000
n=10000

p=0.5
p=0.9
p=0.99
p=0.999

n=200
n=1000
n=10000
n=10^6

In the same way, a query  r    [r,P] may always
be formulated as   r    [r,  P], applying a
property of the predicate calculus, therefore, the
previous study may also be applied for this quantifier.

7  A logistic growth model with a delay
It is very common to find growth processes where an
initial phase of exponential growth is followed by
another phase of asymptotic approach to a saturation
value (Fig. 5.a). The following generic names are
given: logistic, sigmoidal, and s-shaped processes.
This growth appears in those systems where the
exponential expansion is truncated by the limitation
of the resources required for this growth. They
abound in the evolution of bacteria, in mineral
extraction, in world population growth, in epidemics,
in rumours, in economic development, the learning
curves, etc.

    In the bibliography, these models have been
profusely studied. There is a bimodal behaviour

     r  T  [r,P]   r    [r,P]              (11)

   Trajectories space
      A trajectory of T

  Trajectories space that
      verifies P for a domain

       Fig.4  Trajectories space
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pattern attractor: A stands for normal growth, and O
for decay  (Fig. 5.b).
Differential equations of the model S are
           dx/dt=x(n r-m), y=delay (x), x>0, r=h(y),

      h  {(- ,- ),+,(d0,0),+, (0,1),+,                (16)
                 (d1,e0), -,(1,0), - (+ ,- )}
being n the increasing factor, m the decreasing factor,
and h a qualitative function with a maximum point at
(x1,y0) (Fig. 2.b).  The initial conditions are

0  { x0  [LPx,MPx], LPx(m),LPx(n),   MP ,VP }
where LP,MP,VP are qualitative unary operators for
x,  variables.
   We would like to know:
1. if an equilibrium is always reached
2. if there is an equilibrium whose value is not zero
3. if all the trajectories with value zero at the
equilibrium are reached it without oscillations.
4. To classify the database in accordance with the
behaviours of the system.
We apply our methodology to this model. Firstly, the
transformation rules to S are applied,
           dx/dt=x(n r-m), y=delay (x), x>0, r=H(y),
           H, x0  [0,3],  m,n  [0,1],   [0.5,10]   (17)

where H has been obtained by applying Choose H to
h, and the intervals are defined in accordance with the
experts knowledge. The algorithm Database genera-
tion T returns the trajectories database.
   The proposed queries are formulated as follows:
1.  r  T  [r,EQ]

2.  r  T  [r, EQ   t: t  tf  !AP0x(x)]

3.  r  T  [r, EQ   t: t  tf   AP0x(x) 
                                       length(dx/dt=0)=0 ]

being AP0x a unary operator of x. The list of points
where dx/dt=0 is the list with the maximum and
minimum points. If length is 0 then there is not
oscillations.
We classify the database by means of the labels:

[r,EQ  length(dx/dt=0)>0    t : t  tf  !AP0x(x)]
 recovered,

[r,EQ  length(dx/dt=0)>0     t : t  tf  AP0x(x)]
 retarded,

[r,EQ   t : t  tf  AP0x(x)]   extinction,

They correspond to the three possible behaviour
patterns of the system (Fig. 6). They are in

accordance with the obtained behaviours when a
mathematical reasoning is carried out [1].

8  Conclusion and further work
In this paper, a methodology is presented in order to
automatize the analysis of dynamic systems with
qualitative and quantitative knowledge. This
methodology is based on a transformation process,
application of stochastic techniques, quantitative
simulation, generation of trajectories database and
definition of a query/classification language.
   The simulation is carried out by means of stochastic
techniques. The results are stored in a quantitative
database. It may be classified by means of the
proposed language. Once the database is classified,
genetic algorithms may be applied to obtain
conclusions about the dynamic system.
   In the future, we are going to enrich the
query/classification language with: operators for
comparing trajectories among them, temporal logic
among several times of a trajectory, more type of
equations, ...
   A metallurgical Company is interested in modifying
its steel control production system applying the
proposed methodology. In forthcoming papers, we
will describe this system in detail and the conclusions
we shall obtain.
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