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Abstract: - A major problem in map building is due to the imprecision of sensor measures. In a previous paper
we proposed a technique, called elastic correction, for correcting the dead-reckoning errors made during the
exploration of an unknown environment by a robot capable of identifying landmarks. Elastic correction is
based on an analogy between the relational graph modelling the environment and a mechanical structure: the
map is regarded as a truss where each route is an elastic bar and each landmark a node; errors are corrected as
a result of the deformations induced from the forces arising within the structure as inconsistent measures are
taken. The main weakness of this method lies in the way positional inconsistencies are solved when routes are
covered for the first time. In this paper we improve first-sight elastic correction by replacing the heuristics
previously adopted with a new approach which considers all the knowledge of the surrounding map acquired
so far; this is achieved by calculating the minimum forces to be applied in order to restore metric consistency.
The effectiveness of the new approach is demonstrated by presenting some experimental tests.

Key-Words: -  Correction of Positional Error, Dead-Reckoning, Map Building, Self-Positioning, Structural
Analysis, Structured Environments

1 Introduction
Most mobile robots need a map of the environment
to carry out successfully the navigational tasks
assigned to them. Several techniques for
environment representation have been devised in
the literature [7] [13] [8]. Though in some
applications a detailed map of the environment is
given to the robot a priori, map building is still an
important issue for all the applications in which the
environment is unknown and, in general, in order to
have a robot exhibit a fully autonomous behaviour.

Building an accurate map of the enviornment is
made complex by the imprecision of measurements,
which produces metric errors. In particular, we are
interested in systematic errors which can be
modelled by a probabilistic distribution (dead-
reckoning errors); they are inherently associated to
every sensor, thus they play a significant role in
determining the global error.

In [6] we proposed an original approach to map
building, called elastic correction,  which can be
applied to correct the dead-reckoning errors made
by a robot navigating within an environment where
landmarks are present. The environment is
modelled by a relational graph whose vertices and
arcs represent, respectively, the landmarks sensed
and the inter-landmark routes experienced [10].
While exploring the environment, the robot
calculates the relative position of each landmark

compared to the one met immediately before, by
applying dead-reckoning; when it meets a landmark
it has already seen, self-positioning and error
correction are achieved together by combining the
new measurements collected with the knowledge
accumulated so far. In particular, elastic correction
is based on an analogy between the graph modelling
the environment and a mechanical structure: the
map is regarded as a truss where each route is an
elastic bar and each landmark a node. Errors are
corrected as a result of the deformations induced by
the forces arising within the structure as
inconsistent measurements are taken. The elasticity
parameters characterizing the structure are used to
model the uncertainty on odometry.

The main weakness of elastic correction lies in
the way positional inconsistencies are solved when
routes are covered for the first time (first-sight
correction). In fact, the method proposed in [6] is
based on a heuristic criterion which does not fully
exploit the knowledge acquired so far. On the other
hand, first-sight correction has a crucial role in
determining the overall results because (1) the map
metrics should be well assessed since the very first
steps of exploration and (2) in real world
applications, it may not be possible to cover
repeatedly the same routes.

In this paper we improve first-sight correction
by replacing the heuristics previously adopted with
a new approach which considers all the knowledge



acquired so far. This is achieved by calculating the
minimum forces to be applied to the whole map in
order to restore metric consistency.

2 Pose estimation
Let the pose of the robot at time step k be expressed

by its position in a Cartesian plane, p(k) = [ ]x(k)

y(k) ,

and by its orientation, ϕ (k); the well-known dead-
reckoning formula determines the pose at step k+1
as a function of the pose at step k and of the moduli
of the linear and angular velocities, w(k+1) and
u(k+1), respectively, measured by sensors at step
k+1:

p(k+1) =  


 
x(k)+T w(k+1) cosϕ(k)

y(k)+T w(k+1) sinϕ(k)  , (1)

ϕ(k+1) = ϕ(k)+T u(k+1)

where T is the sampling interval of sensors. Using
this formula, the errors made in measuring the
angular velocity u(k+1) accumulate through all the
subsequent evaluations of the pose.

On the other hand, if the robot mounts a
compass, while the new coordinates x(k+1) and
y(k+1) are still calculated as above, ϕ (k+1) may be
measured directly; thus, each new positional
estimate is not affected by the errors made in
measuring the robot's orientation at the previous
steps and the measurements relative to distinct
routes are independent from each other.

An estimate of the positional uncertainty for a
robot moving along a path can be calculated starting
from the density function δ(x,y,C(k)), expressing

the probability that the true robot position is p=[ ]x
y

instead of the measured position p (k). The
covariance matrix C(k) depends on the features of
the sensors mounted on the robot. While from a
theoretic point of view every density function is
possible, previous experiences [14] [9] show that
the errors can be effectively modelled using a
Gaussian distribution with null mean. The area in
which the robot may stand with non-negligible
probability is an ellipse whose shape and
dimensions depend on the length and complexity of
the path [1].

It is well known that the behaviour of compasses
is strongly affected by the proximity of metallic
objects, which is quite common in indoor
environments. This problem can be faced by
comparing the positional estimate based on the
compass with that calculated by odometer-based
dead-reckoning: errors due to metallic objects will
be detected when the estimated orientations
suddenly become significantly conflicting; in this
case, the covariance matrix for conventional dead-

reckoning can be used to compute δ.

3 Elastic correction
The map built by the robot is structured as a non-
directed graph M =(V,R). Each vertex vi∈ V
represents a landmark sensed and is labelled with its

estimated position pi =  


 
xi

yi
; arc rij∈ R represents the

route connecting vi and vj and is labelled with the
number of times the route has been covered so far,
tij. We will denote by ϑ i j  (route orientation,
0≤ϑ ij<π) the absolute orientation of the segment
connecting vi to vj, and by sij (route stretch) its
length, calculated as the Euclidean distance
between pi and pj. Every time the robot moves from
vi to vj covering the corresponding route, the
covariance matrix expressing the uncertainty
induced on the position of vj is calculated; the value
of the covariance matrix depends on how long and
winding is the route covered. Arc rij is labelled with
the average of the tij covariance matrices calculated,
Cij.

Elastic correction is performed during
exploration in two phases. First-sight correction is
carried out whenever a known landmark is met after
covering one or more unknown routes. Refinement
correction is performed when a known route is
covered again.

We do not consider topological errors since we
assume that the robot is capable of recognizing a
landmark it has already met. Landmark recognition
is a complex task; in order to achieve univocal
identification, the imprecision inherent in sensory-
based classification algorithms can be overcome by
augmenting them with approximate metric
information.

3.1 Environment modelling
Elastic correction is based on the analogy between
the environment map M  and a pin-jointed truss
whose elements and nodes represent, respectively,
routes and landmarks (see Figure 1); the parameters
defining the stiffness of each element when loaded
sum up the characteristics of the corresponding
route. The more elastic an element, the greater the
change in length and orientation that it will
experience when loaded; thus, stiffness should be
proportional to the certainty on the stretch and
orientation of the corresponding route.

An element representing a route r with stretch s
and orientation ϑ may be thought of as a bar long s,
oriented according to ϑ and behaving as follows:



(a)

(b)

Figure 1. Graph-based representation of an environment (a)
and equivalent truss (b).

¥ it can be compressed elastically along its axis to
model uncertainty on the route stretch, s;

¥ it can neither be bended nor twisted;
¥ it can rotate elastically to model uncertainty on

the route orientation, ϑ .

From a mechanical point of view, a bar with these
characteristics can be modelled by combining a
linear axial spring and a rotational spring (see
Figure 2), whose spring constants ka and kr must be
defined in function of the probability density
function of the robot position. The details are given
in [6].
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Figure 2.  Truss basic element, including a linear elastic spring
(in black) and a rotational elastic spring (in grey).

3.2 The stiffness method
Let an elastic structure which can be modelled as an
assemblage of members connected at node points
be given. The problem of determining the
displacements of the nodes when one or more of
them are loaded with a force can be solved by
applying the stiffness method [11].

Let n be the number of nodes in an elastic
bidimensional structure; the relationships linking
the displacements of the nodes to the forces applied
to them are expressed in matrix form by the
stiffness equation:

u = K-1 f

where f is the column matrix of x- and y-
components of the nodal forces, u is the column
matrix of the x- and y-components of the nodal

displacements, and K is a symmetric square matrix
with rank 2n (stiffness matrix), whose elements are
the stiffness coefficients of the structure.

In order to solve the stiffness equation, the n
nodes may be partitioned in two sets α and β, the
first one including the free nodes, and the latter
containing the nodes whose displacements are
constrained. The relationship between
displacements and forces can thus be rewritten as:

 



 

uα

uβ
 = 

 



 

K-1αα K-1αβ

K-1βα K-1ββ
  
 



 

fα

fβ
(2)

where fα and fβ represent, respectively, the loads
applied to the free nodes and the reactions in the
constrained nodes.

3.3 Correction of first-sight errors
Suppose the robot is exploring an unknown area
starting from a known landmark v0 in position p0. It
meets the unknown landmarks v1,...vm - 1  by
covering a sequence of unknown routes, and finally
reaches a landmark vm which it has already met.
When vm is reached, the new positional estimate
p"m computed by dead-reckoning may be compared
to the previous one, p'm; due to sensor errors, the
two estimates will certainly differ. Let

uÐm = p"m − p'm
If vm has been met before v0, the segments orderly
connecting p0 to p"m form an open polygonal (see
Figure 3.a). Otherwise, the segments orderly
connecting p'm to p"m form a closed polygonal (see
Figure 3.b).
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Figure 3. Error correction on open (top) and closed (bottom)
polygonals.



The graph representing the environment should
be metrically consistent at each time during
exploration, hence, the two positional estimates for
vm must be forced to agree exactly. We assume the
error on the stretch of each route to be proportional
to the positional uncertainty induced by that route.
In the solution proposed in [6], metrical correction
was achieved as follows:

¥ constraining p0 and applying a displacement

uÐm to p"m if the polygonal is open;
¥ constraining p'm and applying a displacement

 uÐm to p"m if the polygonal is closed.

In both cases, the displacement applied moves p"m
on p'm thus restoring the metric consistency of the
graph; the displacements calculated for the free
nodes determine the new positions for the
landmarks involved.

Figure 4 shows an example for a simple closed
polygonal.

   
(a) (b)

Figure 4. Elastic correction on a regular hexagon. The real
graph is in light grey; the measured one in dark grey (a); the
corrected one is in black (b).

3.4 Refinement of map measurements
Every time the robot covers a route rij it has covered
before, it can exploit the new information acquired
to improve the current estimate of the stretch and
orientation of rij and, thus, that of the positions of
its end landmark vi and vj . Reasonably, the
estimates for rij should be equal, at each time, to the
average of the data measured so far. The desired
displacements for vi and vj are calculated by
imaging to rotate rij around its midpoint in order to
let it assume the new stretch and orientation.

This solution is not satisfactory since it does not
take into account all the knowledge of the
environment collected so far, while using global
knowledge to correct the error on a single route is
essential when the certainty on the routes is not
evenly distributed. Another issue arising when
correcting the error on a route is how metric
consistency for the graph representing the
environment is maintained: in fact, correcting the
stretch and orientation of rij implies modifying the

stretches and orientations of the adjacent routes.
Our mechanical model allows both issues to be

addressed. Let rij be the last route experienced.
Firstly, the forces producing the desired
displacements on the ends of rij are calculated on a
reference structure including rij and the two
adjacent routes of maximum stiffness. Then, these
forces are applied to vi and vj within a structure
including the set of routes connecting the η
landmarks nearest to rij. Further details can be
found in [6].

4 Solving open polygonals
The approach described in Section 3.3 for closed
polygonals is correct since metric inconsistency is
only due to the errors made by the robot while
covering the path between vh  and vm , and
correction affects exactly the corresponding set of
routes.

On the other hand, the solution adopted for open
polygonals (which we will call constrained stretch,
CS) represents a simplification since it assumes that
the errors have been made inside the polygonal. On
the contrary, for example, in Figure 3.a the path p0,
p1,...p"m  could be mostly correct while the
positional inconsistency could derive mainly from
the path p0, p-1,...p'm.

The approach we propose in this section, which
we will call minimum magnitude (MM), removes
the previous assumption and determines the optimal
stretches to restore metric consistency by keeping
all the information acquired so far into account,
consistently with the solution adopted for map
refinement. The improvement obtained is very
relevant since, in real environments, the robot is
often required to cover open polygonals.

Keeping the errors made outside the polygonal
into account implies considering a surrounding area
determined by the set of routes connecting the η
landmarks nearest to vm. The structure we define to
model the problem includes all the landmarks
belonging to this area; among these, the landmarks
lying on the external border are constrained. Let α
and β be the sets of free and constrained nodes,
respectively.

Restoring metric consistency requires both p 'm
and p"m (belonging to α) to be moved to the same
position p*m. In order to accomplish this, an infinite
number of couples of forces f', f" to be applied to
p'm and p"m respectively could be used. All these
couples satisfy the following linear system

A f  = −uÐm (3)

where uÐm = p"m − p'm, f = [ ]f'
f"  and A is a (2x4)



matrix obtained from K-1αα  assuming that the only
forces applied to the truss are f' and f". Within this
infinite set, we choose the couple f'*, f "* with
minimum magnitude. Intuitively, this choice
produces the minimum truss deformation.

The problem of determining  f'* and f"* can be
formulated as a constrained optimization problem
where the function to be minimized is the norm of f
while the constraint is expressed by (3):

 

 min(    f 2

2 ) = min(fTf)

A f  = −uÐm

(4)

This problem can be solved using the Lagrangian
method [4]:

L(f, λ) = fTf − (Af + uÐm)Tλ
determining the linear system:

 

 2f − ATλ = 0

fTAT + uÐmT = 0

that admits an analytic solution.
Figure 5.a shows the error made by the robot

while covering an open polygonal; in Figures 5.b
and 5.c the inconsistency is solved by applying CS
and MM, respectively. Figure 6 shows the
corresponding forces for MM. It should be noted
that the two forces have both different magnitudes
and different directions; this is a consequence of the
truss structure which induces different constraints
on  p'm and p"m.

            
(a) (b) (c)

Figure 5. Open polygonal correction on a rectangular mesh.
The real graph is in light grey; the measured one in dark grey
(a). In (b) correction is achieved by CS, in (c) by MM.

Figure 6. Forces applied to solve the open polygonal in Fig. 5.

5 Experimental results and
conclusion
We have extensively tested the elastic correction
technique on a set of environments in order to

evaluate its effectiveness and robustness. We
estimate the error on the map metric by two
measurements: the average percentage error on the
stretch of the routes, σ, and the average error on the
orientation of the routes, ρ.

Table I and Figure 7 show the results of open
polygonal correction on a regular map, assuming
that both the variances of the odometer and
compass errors are 0.09. It is remarkable how, as
compared to CS,  the MM approach not only
restores map consistency but also significantly
reduces the overall error.

σ (%) ρ (rad)
before correction 6.9 0.065

after correction with CS 6.9 0.059
after correction with MM 5.7 0.050

Table I. Errors for the first-sight correction in Figure 7.

 

Figure 7. Open polygonal correction on a regular map. The real
graph is in light grey, the measured one in dark grey (top), the
one corrected with MM in black (bottom).

In order to prove the effectiveness of our
technique, we compared it with the method
proposed in [9] (which we will call ML) which
operates on a graph-based environment
representation and allows the global poses of
multiple scans to be calculated by using all the pose



relations as constraints. The scan poses are
considered as variables. A pose relation is an
estimated spatial relation between the two poses
which can be derived from matching two range
scans. Global poses are then estimated by solving
an optimization problem based on maximum
likelihood.

The tests, whose results are shown in Table II,
were made on an irregular dishomogeneous map
which simulates a real-world environment. MM
confirms to be superior to CS, and is comparable
with ML. Our elastic correction technique turns out
to be superior to ML when each route is
experienced more than once. Figure 8 shows how,
adopting elastic correction, the average errors on
route stretch and orientation is significantly
decreased as the map is repeatedly toured; on the
contrary, after 10 tours, the average errors adopting
ML increase to  σ = 12.8% and  ρ = 0.135. This
result can be explained considering that ML
assumes that all the observation errors are mutually
independent, while in elastic correction  the
deformation of each bar depends on the
characteristics of the others.

σ (%) ρ (rad)
before correction 9.6 0.077

after correction with CS 9.5 0.081
after correction with MM 7.7 0.069
after correction with ML 7.5 0.073

Table II. Errors for the first-sight correction in Figure 7.
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Figure 8. Errors on route stretch and orientation in function of
the number of exploration tours.

The other correction approaches proposed in the
literature are either based on assumptions and
sensory equipment radically different from our and
thus can hardly lead to a quantitative comparison
[3] [12].
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