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1 Introduction

A general problem in mobile robot navigation is knowing the robot's pose (position and orientation) in

the environment. This is a crucial feature for autonomous robots performing complex tasks over long

periods of time.

Techniques for robot self-localization (see [2] for a survey) can be distinguished in the use of relative or

absolute positioning methods. Each of these techniques provides good results as long as some assumption

are veri�ed. For example, dead reckoning approaches are accurate only over short runs of the robot, since

error in positioning constantly increases over time. Moreover, global positioning systems and arti�cial

landmark recognition are e�ective as long as the environment can be appropriately structured. Since none

of these techniques provides for a global solution to the self-localization problem, it is often necessary

to integrate di�erent localization methods in order to improve the overall result. A typical solution is

to rely on dead reckoning methods (such as odometry) for a short period of time, and then to apply an

absolute positioning method.

One of the most common class of methods for absolute positioning is model matching, that is the

process of determining the pose of the robot by a matching between a given model of the environment

(a map) and the information acquired by the robot's sensors. Observe that these methods require an

a priori knowledge of the environment (a map), but they do not require ad hoc modi�cations in the

environment.

In this paper we present a self-localization method that is based on matching a geometric reference

map with a representation of range information acquired by the robot's sensors. The technique is quite

adequate for indoor oÆce-like environments, and speci�cally for those environments that can be repre-

sented by a set of segments. We exploit the properties of the Hough Transform for recognizing lines from

a sets of points, as well as for calculating the displacement between the estimated and the actual pose of

the robot. We tested the approach in the RoboCup environment [1] with good results.

2 The Hough Transform

The Hough Transform is a robust and e�ective method for �nding lines �tting a set of 2D points [5]. It is

based on a transformation from the (x; y) plan (a Cartesian plan) to the (�; �) plan (the Hough domain).



The transformation from (x; y) to (�; �) is achieved by associating every point P (x; y) in the Cartesian

plan with the following curve in the Hough domain � = x cos�+ y sin�. At the same time, a point in the

Hough domain corresponds to a line in (x; y). Notice that this is a unique and complete representation

for lines in (x; y) as long as 0 � � < �.

A graphical representation of the Hough Transform can be obtained by generating a discrete grid of

the (�; �) plan (let Æ� and Æ� be the step units), and by de�ning HT (�; �) as the number of points in

(x; y) plan whose curve lies within the interval (� � Æ�; �� Æ�).

Observe that it is possible to consider a Hough grid as a voting space for points in (x; y). In other

words, every point in (x; y) \votes" for a set of lines (represented as points in (�; �)), that are all the lines

passing through that point. Notice that, in the case of a set of aligned points in (x; y), the point in the

Hough domain that \receives" the highest number of votes is the one corresponding to the line passing

through these points.

The Hough Transform has a number of interesting properties:

1. Given a set of input points, a local maximum of HT (�; �) corresponds to the best �tting line of

these points. Given a set of input points originally belonging to several lines, local maxima of

HT (�; �) correspond to the best �tting lines for each subset of points relative to a single line.

2. With respect to other techniques for extracting segments from a set of points, the Hough Transform

is very robust to noise produced by isolated points (since their votes do not a�ect the local maxima)

and to occlusions of the lines (since point distances are not relevant).

3. Measuring displacement of lines in the Cartesian plan corresponds to measuring distance of points

in the Hough domain. Indeed, the distance between parallel lines and the angular di�erence between

lines is given respectively by a �� and a �� between the corresponding points in the Hough domain.

3 Hough Transform based Self-Localization

The self-localization method we are going to describe applies to any robot equipped with sensors that

are able to give range information about the environment. For example, ultrasonic sonars, laser range

�nders, stereo vision systems are di�erent ways to measure distances of objects around the robot.

We thus consider any sensor which returns a set of points, in the local coordinates of the robot,

corresponding to a surface of an object. Observe that, in general, these sensors do not allow for simple

implementation of object recognition techniques and thus they often retrieve range data from objects in

the map (e.g. walls in the environment) as well as from unpredicted obstacles (such as persons moving

in the world).

Given this set of points acquired by the robot's sensors and a model of the environment, we want to

calculate the displacement between the estimated and the actual pose of the robot.

Under the assumption that the environment can be represented by a set of segments, and in order

to exploit the properties of the Hough Transform, we address the localization problem in the Hough

domain. In this way the model of the environment is represented by a set of points in the Hough domain

and the range data points acquired through the sensors are transformed in the Hough plan. The map

matching process is performed over points in the Hough domain and the displacement needed for a correct

re-positioning of the robot is easily calculated in the Hough plan.

Summarizing, the Hough Transform based localization method consists in the following steps:
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Figure 1: Map matching in the Hough domain

1. extracting range information from the environment in the form of a set of point in the (x; y) plan,

2. applying the Hough Transform to the set of points generating a discrete Hough grid HT (�; �),

3. determining the local maxima by a threshold,

4. �nding correspondences between local maxima and reference points,

5. measuring the displacement between local maxima and the corresponding reference points in the

Hough domain.

Observe that the second step requires a discretization of the Hough plan. This parameter must be

accurately tuned since when the discretization is too �ne, several local maxima can be found in the same

\region" of the Hough plan and this involves ambiguities in the matching process. On the other hand, the

grid intervals represents a bound in the precision of positioning (larger intervals involve lower precision).

Therefore, a trade-o� between precision and matching ambiguities must be considered when setting the

discretization of the Hough plan.

Moreover, it is important to notice that the choice of the threshold for identifying the local maxima

(third step) is not a critical factor, since HT (�; �) presents very high peaks in presence of aligned points

and thus a percentage over the overall number of input points is appropriate for identifying the best

�tting lines of a set of points.

Instead the fourth step is more critical, since in some cases it can be diÆcult to decide which is the

correct correspondence between points. We adopt two di�erent strategies: (i) assuming that odometry

provides for an almost correct position over a short time, the matching is performed between a local

maximum and the nearest reference point; (ii) in case of ambiguities, we apply a more general procedure

that acquires a greater amount of data about the environment (by integrating di�erent sensory data)

and performs an overall match between the set of local maxima and the set of reference points.

Consider the example shown in Fig. 1, where the robot faces a corner. The solid segments a, b

represent the map model and the set of points a', b' represent data coming from sensor devices. The four

segments are also displayed in the Hough domain: a, b (indicated by a circle) are the reference points,

while a', b' (indicated by a cross) represent the local maxima of the Hough Transform applied to the set

of input points. In the Hough domain it is easy to calculate the displacement between the estimated and

the actual pose of the robot (�x;�y;��).

In the example, �� is the di�erence a0

� � a� or b
0

� � b�. In ideal conditions these di�erences should be

the same; if not, an average between these values allows for a good approximation. After the correction
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Figure 2: The RoboCup world model

�� is applied to the robot's representation of the map, it is possible to calculate the other two factors

�x = a0

� � a� and �y = b0

� � b�.

In the next section we discuss an application of this localization technique in the RoboCup environ-

ment.

4 Self-Localization in the RoboCup environment

The RoboCup competition consists of soccer matches between robotic teams [1]. Each soccer player is

equipped with on-board acting and sensing devices, while global positioning systems are not allowed.

The RoboCup environment assumes the following characteristics that must be considered for the

choice of localization methods: (i) the geometry of the walls delimiting the �eld and of the lines drawn

on the �eld is known, (ii) the environment is highly dynamic (there are many robots and the ball moving

in the �eld); (iii) the task must be performed continuously for a \long" time (the length of each period is

10 minutes); (iv) the environment cannot be modi�ed; (v) crashes among robots are possible. All these

factors determine a diÆcult scenario for localization methods. Indeed, dead reckoning methods are not

e�ective for localization, since they accumulate errors over time and they cannot deal with crashes among

players. Absolute positioning methods based on map matching must consider the high noise in acquiring

range information from the environment due to other robots moving in it.

It is worth noticing that the above characteristics are very similar to those of an oÆce-like environment

delimited by walls and populated with unknown and moving obstacles (e.g. persons moving around).

In order to provide our robot soccer players with an e�ective and robust localization method for

the RoboCup environment, we apply the Hough Transform based localization method. Because of the

peculiar de�nition of objects properties in the RoboCup environment (the ground �eld is green and the

walls and the lines are white), we decided to extract range information from walls and lines by using

a simple color camera, a line extraction procedure, and a triangulation technique for computing the

distances of points in the 2D plan around the robot.

The model of the RoboCup environment is shown in Fig. 2. We consider seven segments corresponding



Figure 3: A Self-Localization Example

to the four walls a,e,f,g and the three lines b,c,d. Observe that the walls are real obstacles for the robot,

while lines are drawn in the �eld and do not correspond to obstacles.

A self-localization task is displayed in Fig. 3. In the upper part there are the image acquired by the

camera and the extracted points, while in the lower part there are local views of the robot before and

after the re-positioning process. Observe that isolated noisy points (that are due to the high luminosity in

the center of the image) do not a�ect the displacement measures. We have also veri�ed that the method

is very robust to occlusion of lines, thanks to the properties of the Hough Transform.

The performance of the system are adequate for real-time execution with a low-cost color camera

and a conventional Pentium based PC, that is on board of the robot. In fact, in our case, most of

computation time (a few tenths of second) is taken by the image processing procedure for line extraction.

As for accuracy, we obtain good results with a discretization of the Hough grid (and hence an average

precision) of 3 degrees for � and of 10 cm for �.

5 Conclusion

Knowing the position of a mobile robot in an environment is a critical element for e�ectively accomplishing

complex tasks requiring autonomous navigation. The localization problem has been thus addressed in

the past from many di�erent perspectives. In particular, absolute positioning methods based on map

matching have been extensively studied (see [4, 10] for occupancy grid matching strategies, [8] for the

angle histogram method, [3] for a probabilistic approach, [7] for scan matching techniques, and [6] for

experimental comparisons).



They present di�erent solutions that are generally robust to sensor noise, ambiguous situations, partial

model description. However, in a moderately crowded and dynamic environment, map matching based

localization methods must also be robust to noise given by unknown objects sensed by range sensors.

The diÆculty in dealing with this kind of noise, that is typical in real environments. is that it cannot be

appropriately modelled.

We have presented a self-localization technique for mobile robots in oÆce-like environments, that is

suitable with any kind of sensors able to provide range information about objects in the world. We exploit

the robustness properties of the Hough Transform for de�ning an e�ective and robust self-localization

method for dynamic environments. We have successfully tested this method in the RoboCup environment

and we believe that it has been a good benchmark for its use in oÆce-like environments delimited by

rectilinear walls and populated with unknown and moving obstacles (e.g. persons moving around). We

are working on testing the method in an actual oÆce environment by making use of accurate range data

extracted by a stereo vision system [9].
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