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Abstract

In this paper we give a procedure to solve the stabilization problem of a class of discrete-time feedforward

systems.

This result, based on Lyapunov techniques, can be viewed as a discrete version of the work of Jankovic,

Sepulchre and Kokotovic.
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1 Introduction

The stabilization problem of feedforward systems have
been largely studied in the literature, see for instance [3]
[19]. Recently, Sepulchre, Jankovic and Kokotovic have
been developed an iterative procedure to stabilize the fol-
lowing class of nonlinear feedforward

i‘l = l‘2—|—f1(l‘2,...,l‘n) (1)
i‘z = l‘3—|—f2(l‘3,...,l‘n) (2)

- (3)
T, = u. (4)

This algorithm is a "bottom-up” procedure. In order to
stabilize the overall system we begin by stabilizing the
sub-system &, = u. By considering this simple Lyapunov
function V,, = %xi, we derive the controller u, = —x,.
After this, we consider the augmented the sub-system

xn_1+fn—1($n—1a$n) (5)
Up + U (6)

Tn—-1 =

Ty, =

and we construct a new Lyapunov function V,_; by
adding a new term in the above Lyapunov function. This
term will ensure that Vn_1|u:0 < 0, from this we deduce
a controller u = u,,_; which ensure the global asymptotic
stability of the augmented sub-system. By repeating this
procedure at each step, we deduce that the stabilizing

controller have the folowing structure w = >_"_ u;. The
aim of this paper is to proof that by using the same idea
in the discrete-time systems, we can derive a controller
which ensure the global asymptotical stability of the sys-

tems

xllc-l—l = x,lc—i—fl(xz,...,xZ)
Tipr = i+ fa(@l, . @)

= (7)
l‘Z+1 = Ug,

where f; are a smooth functions which satisfie the follow-
ing growth condition

| filzi, . (8)

We also assume that the linear approximation is stabiliz-

able.

x| < all(ziy . za|| a>0.

1.1 Globally asymptotically stabilizing

feedback

In this section, we recall some results on the stabilization
problem. Let us consider the discrete-time nonlinear sys-

tems

zip1 = flzi) + g(wi, wi)u; (9)
with f(0) = 0 and #; € R” and v € R and introduce the
following assumptions:



Assumption 1.1 There exists a positive definite
function V' zero at the origin and such that

V(f(x)) = V(z) <0.

Assumption 1.2 The sets

Q = {2eR": V() =V(f'(2),
i=0,1,2,...} (10)
S = {veR": %|a=f’+1(m)g(fi(x)70) =0,
i=0,1,2,...} (11)

are such that

Qs = {0},

Remark. The systems (9) is a single-input system.

Let us recall a result which is an immediate consequence
of [8, Lemma I1.4] or of the feedback design of [20, Section
2].

Theorem 1.3 Consider the discrete-time systems (9).
Assume that Assumptions (1.1} and (1.2) are satisfied.
Then for all function pu(x) > 0, there exists a smooth
funetion ¢(x) such that the following feedback control

W) = —6@h(z0),  0<o@) <px)  (12)
h(a:,u) = g_‘o/[|oc:f(x)+g(x,u)u€g(xau)dg (13)

globally asymptotically stabilizes the system (9).

2  Design procedure
Step n

Firstly, let us consider the sub-system xy , = u;. We
can see that the stabilization is easily achieved by the
controller u, (2}) = az} avec a < 1 and the Lyapunov

function V,, («}) = xzz.

Step n—1

Now, let us introduce the term v,,_; in the above control
law

n—1

Un—1(Ty ", 7)) = un () + Voot

Then, the augmented sub-system will be rewritten as fol-
lows:

Th1 e+ faoa(2)

B = wa(el) +vas, (14)

In order to derive v,,_; which ensure the stabilization of
the above sub-system, we firstly derive a Lyapunov func-
tion in the case where v,,_1 = 0, and after this we derive a
stabilizing control law. In order to do this, let us consider
the following change of coordinates

G702 )T Y e (#) = 1 e (@), (15)
=0

where Z}' is the solution of the sub-system =} | = u,(z})
by considering «} as initial conditions. The existence of
this change of coordinates is linked to the convergence of

the series
(o)
> Fama ().
=0

In order to guarantee this convergence, we assume that
the function f,, satisfies a growth condition and from the
fact that x, converge exponentially, the existence of this
series 1s guaranteed. In the other hand we can see that
in the case where v,_1 = 0, we have zg;ll = 22—1. This
means that we can write the sub-system (14) in this case
as follows:

dno= oA
n _ n
Ty = Qxp. (16)

Now we can say that V,,_; = V,, + (z”_1)2 is a Lyapunov
function of the sub-system (16). In order to derive the
stabilizing controller, let us substitute u,, by u,_1. Then
the sub-system (14) will be rewritten in the new coordi-
nates as follows:

Gt = s R TR vam ) e
(1)

n n
Tyl = ATy +Up—1

where

1
— ahn—l

kn 1/ .n e —

1 (xkav 1) /0 dav

n—l).

|oc:ax"+€vn_1d9~

Let us compute AV, _q (2", z

AV, o1 (2", z"_l) = (a2 — 1)(1‘"),% + 2027 v, 1

2
n—1

L€ EAY) U

1

n—1/.n n—
V1 kYT (2, 1)1 2y,

_|_
+ (18)

By choosing the following controller

Un—-1 = —¢n—1($2)<2“l’2 + Qk?—l(xz’ 0)22_1) (19)

where ¢,,_1 is defined as in [19] and if we assume that the
sub-system satisfies (14) the Theorem (1.3) ,and from the
fact that the linear approximation is stabilzable, we can
say that the system (17) is globally asymptotically and
locally exponentially stable in closed loop.



Stepi=n—2,...,1.

Let us define

wi(at, o x") = i (2T ) g (20)
As previously, we assume that the controller
w1 (2'F ... 2™) ensure the global asymptotic and local

exponential stability of the sub-system

;:I—ll = ! + fi+1($§c+2’ R 1‘2)
why = wip(ett o f)
which is denoted by
i1 i1yl
Xy = PG, (21)

In order to derive v; which ensure the global asymptotic
and local exponential stability of the sub-system

J:Z_I_l = xz-l-fi(l‘?l,...,xZ)
xz-:_ll = $2+1 + fi+1(l‘2+2, ) 1‘2) (22)
Thyl = wipr (2" + v

at first we must find a lyapunov function for the sub-
system (22) in the case v; = 0. For that let us rewrite
the sub-system (22) as follows:

Thpr = e filegtt e
Xio= PTG (23)

Let us consider the following change of coordinate
dgo=a ) RETL ) =2+ k(XY (24)
j=0

i+1

n

where 5 .., 1s the solution of the sub—system
X;"_I'_ll = FZ‘H(XZ‘H) by considering that (z57!, ... #2) =
(x 2"’1, co 2R,

As in the second step , the convergence of the series

oQ

D i

7=0

P )]

is ensured by the exponentially convergence of the sub-
system

XZ-I—l

7 i+1
pp = PG

and the fact that f; satisfies a growth condition. Note
that, like previously, Zk+1 = 2! this means that (21) will
be

Zli+1 = %
X = PR, (25)

Since AV;(X't1 2%) = AVi1 (X)), we can easily see
that V; = Vij1 + 222 1s a lyapunov function of the sub-
system (25). Now, by replacing u; 41 by u;, we will have

Gepr = 2k ROGH v
xitt FHYXGEY) + by (26)
or
K oy = [ 2 b do
1( k ,vl) = : [aa |O(:Fl+1(X;+1)+blU19] [
Remarks

i From the structure of the system (7) we can say
that his linear approximation is controllable, this

means that k¢(0,0) # 0.

ii The change of coordinate z = T'(x) is a global dif-
feomorphism because gT is an upper triangular ma-
trix which all it’s diagonal elements are equal to
one.

Proposition I The Assumptioms (1.1) and (1.2)are sat-
isfied by the sub-system (26).

Proof

Since the system X;"_I'_ll = FZ‘H(XZ‘H) converge globally

asymptotically and z;,; = z; in the case where v; = 0
then the set € is defined by
Q= {(X*,5) =

(0,29 2 eR}).

In the same way, the sub-system is defined by

S o= (X)) 22k ([FHY (X)), 0)
Vi1
+ B la=[pit1ps (xi+1)bi
j=0,1,..} (27)

By using the fact k%(0,0) # 0, we conclude that QNS =
{(X™H, 1) = (0,0}
Furthermore,

— Vip ()

(X3 + bive)
22k + 1) — 27 (k).



Then,

AVI(X'T 2 = Vi (FY(XGH) = Vi (X
+ WX g ) (28)

with

1
. . AViiq
WX 28 0 = s . b;dg
(X&' 20, v4) /0[ B |Q=F1+1(Xk+1)+b,v,9]

+ ZZf;ki(XliH,U,') + [kil(XliH, vi) i

By using the Theorem (1.3), and from the fact that the
linear approximation is stabilizable, we can see that the
controller

Vi = _¢i(Xli+1’Zli)l(Xli+l’zli’0) (29)
where ¢; is defined as in the work of Mazenc [19] ensure
the local exponential and global asymptotic stability (26).

Summarizing, we can give the following theorem

Theorem 2.1 The controller v = ax™ + Zgzn_lvi
where a < 1 ensure the global asymptotic and local expo-
nential stability of the class of system (7) in closed loop.
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