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Abstract

In this paper we give a procedure to solve the stabilization problem of a class of discrete-time feedforward

systems.

This result, based on Lyapunov techniques, can be viewed as a discrete version of the work of Jankovic,

Sepulchre and Kokotovic.
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1 Introduction

The stabilization problem of feedforward systems have
been largely studied in the literature, see for instance [3]
[19]. Recently, Sepulchre, Jankovic and Kokotovic have
been developed an iterative procedure to stabilize the fol-
lowing class of nonlinear feedforward

_x1 = x2 + f1(x2; : : : ; xn) (1)

_x2 = x3 + f2(x3; : : : ; xn) (2)

... =
... (3)

_xn = u: (4)

This algorithm is a "bottom-up" procedure. In order to
stabilize the overall system we begin by stabilizing the
sub-system _xn = u. By considering this simple Lyapunov
function Vn = 1

2
x2n, we derive the controller un = �xn.

After this, we consider the augmented the sub-system

_xn�1 = xn�1 + fn�1(xn�1; xn) (5)

_xn = un + u (6)

and we construct a new Lyapunov function Vn�1 by
adding a new term in the above Lyapunov function. This
term will ensure that _Vn�1ju=0 � 0, from this we deduce
a controller u = un�1 which ensure the global asymptotic
stability of the augmented sub-system. By repeating this
procedure at each step, we deduce that the stabilizing

controller have the folowing structure u =
Pn

i=n ui. The
aim of this paper is to proof that by using the same idea
in the discrete-time systems, we can derive a controller
which ensure the global asymptotical stability of the sys-
tems

x1k+1 = x1k + f1(x
2
k; : : : ; x

n
k)

x2k+1 = x2k + f2(x
3
k; : : : ; x

n
k)

... =
... (7)

xnk+1 = uk;

where fi are a smooth functions which satis�e the follow-
ing growth condition

jfi(xi; : : : ; xn)j � �jj(xi; : : : ; xnjj � > 0: (8)

We also assume that the linear approximation is stabiliz-
able.

1.1 Globally asymptotically stabilizing

feedback

In this section, we recall some results on the stabilization
problem. Let us consider the discrete-time nonlinear sys-
tems

xi+1 = f(xi) + g(xi; ui)ui (9)

with f(0) = 0 and xi 2 Rn and u 2 R and introduce the
following assumptions:
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Assumption 1.1 There exists a positive de�nite
function V zero at the origin and such that
V (f(x)) � V (x) � 0.

Assumption 1.2 The sets


 = fx 2 R
n
: V (f

i+1
(x)) = V (f

i
(x));

i = 0; 1; 2; : : :g (10)

S = fx 2 R
n
:
@V

@�
j�=fi+1(x)g(f

i
(x); 0) = 0;

i = 0; 1; 2; : : :g (11)

are such that



\

S = f0g:

Remark. The systems (9) is a single-input system.

Let us recall a result which is an immediate consequence
of [8, Lemma II.4] or of the feedback design of [20, Section
2].

Theorem 1.3 Consider the discrete-time systems (9).
Assume that Assumptions (1.1) and (1.2) are satis�ed.
Then for all function �(x) > 0, there exists a smooth
function �(x) such that the following feedback control

u(x) = ��(x)h(x; 0); 0 < �(x) � �(x) (12)

h(x; u) =

Z 1

0

@V

@�
j�=f(x)+g(x;u)u�g(x; u)d� (13)

globally asymptotically stabilizes the system (9).

2 Design procedure

Step n

Firstly, let us consider the sub-system xnk+1 = uk. We
can see that the stabilization is easily achieved by the
controller un(x

n
k) = axnk avec a < 1 and the Lyapunov

function Vn(x
n
k) = xnk

2.

Step n� 1

Now, let us introduce the term vn�1 in the above control
law

un�1(x
n�1
k ; xnk) = un(x

n
k) + vn�1:

Then, the augmented sub-system will be rewritten as fol-
lows:

xn�1k+1 = xn�1k + fn�1(x
n
k)

xnk+1 = un(x
n
k ) + vn�1: (14)

In order to derive vn�1 which ensure the stabilization of
the above sub-system, we �rstly derive a Lyapunov func-
tion in the case where vn�1 = 0, and after this we derive a
stabilizing control law. In order to do this, let us consider
the following change of coordinates

zn�1k = xn�1k +

1X
i=0

fn�1(~x
n
i ) = xn�1k + hn�1(x

n); (15)

where ~xni is the solution of the sub-system xnk+1 = un(x
n
k )

by considering xnk as initial conditions. The existence of
this change of coordinates is linked to the convergence of
the series

1X
i=0

fn�1(~x
n
i ):

In order to guarantee this convergence, we assume that
the function fn satis�es a growth condition and from the
fact that xn converge exponentially, the existence of this
series is guaranteed. In the other hand we can see that
in the case where vn�1 = 0, we have zn�1k+1 = zn�1k . This
means that we can write the sub-system (14) in this case
as follows:

zn�1
k+1 = zn�1

k

xnk+1 = axnk : (16)

Now we can say that Vn�1 = Vn+(zn�1)
2
is a Lyapunov

function of the sub-system (16). In order to derive the
stabilizing controller, let us substitute un by un�1. Then
the sub-system (14) will be rewritten in the new coordi-
nates as follows:

zn�1k+1 = zn�1k + kn�11 (xnk ; vn�1)vn�1

xnk+1 = axnk + vn�1 (17)

where

kn�11 (xnk ; vn�1) =

Z 1

0

@hn�1

@�
j�=axn+�vn�1d�:

Let us compute �Vn�1(x
n; zn�1).

�Vn�1(x
n; zn�1) = (a2 � 1)(xn)2k + 2axnkvn�1

+ v2n�1k
n�1
1 (xnk ; vn�1)vn�1z

n�1
k

+ [kn�11 (xnk ; vn�1)]
2v2n�1: (18)

By choosing the following controller

vn�1 = ��n�1(x
n
k )
�
2axnk + 2kn�11 (xnk ; 0)z

n�1
k

�
(19)

where �n�1 is de�ned as in [19] and if we assume that the
sub-system satis�es (14) the Theorem (1.3) ,and from the
fact that the linear approximation is stabilzable, we can
say that the system (17) is globally asymptotically and
locally exponentially stable in closed loop.
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Step i = n� 2; : : : ; 1:

Let us de�ne

ui(x
i; : : : ; xn) = ui+1(x

i+1; : : : ; xn) + vi: (20)

As previously, we assume that the controller
ui+1(x

i+1; : : : ; xn) ensure the global asymptotic and local
exponential stability of the sub-system

xi+1
k+1 = xi+1

k + fi+1(x
i+2
k ; : : : ; xnk)

... =
...

xnk+1 = ui+1(x
i+1
k ; : : : ; xnk)

which is denoted by

Xi+1
k+1 = F i+1(Xi+1

k ): (21)

In order to derive vi which ensure the global asymptotic
and local exponential stability of the sub-system

xik+1 = xik + fi(x
i+1
k ; : : : ; xnk)

xi+1
k+1 = xi+1

k + fi+1(x
i+2
k ; : : : ; xnk) (22)

... =
...

xnk+1 = ui+1(x
i+1; : : : ; xn) + vi:

at �rst we must �nd a lyapunov function for the sub-
system (22) in the case vi = 0. For that let us rewrite
the sub-system (22) as follows:

xik+1 = xik + fi(x
i+1
k ; : : : ; xnk)

Xi+1
k+1 = F i+1(Xi+1

k ): (23)

Let us consider the following change of coordinate

zik = xik +

1X
j=0

fi(~x
i+1
j ; : : : ; ~xnj ) = xik + hi(X

i+1
k ); (24)

where ~xi+1
j ; : : : ; ~xnj is the solution of the sub-system

Xi+1
k+1 = F i+1(Xi+1

k ) by considering that (~xi+1
0 ; : : : ; ~xn0 ) =

(xi+1
k ; : : : ; xnk).

As in the second step , the convergence of the series

1X
j=0

[fi(~x
i+1
j ; : : : ; ~xnj )]

is ensured by the exponentially convergence of the sub-
system

Xi+1
k+1 = F i+1(Xi+1

k )

and the fact that fi satis�es a growth condition. Note
that, like previously, zik+1 = zik, this means that (21) will
be

zik+1 = zik

Xi+1
k+1 = F i+1(Xi+1

k ): (25)

Since �Vi(X
i+1; zi) = �Vi+1(X

i+1), we can easily see
that Vi = Vi+1 + z2i is a lyapunov function of the sub-
system (25). Now, by replacing ui+1 by ui, we will have

zik+1 = zik + ki1(X
i+1
k ; vi)vi

Xi+1
k+1 = F i+1(Xi+1

k ) + bivi (26)

or

ki1(X
i+1
k ; vi) =

Z 1

0

[
@hi

@�
j�=F i+1(X

i+1

k
)+bivi�

]bi d�

Remarks

i From the structure of the system (7) we can say
that his linear approximation is controllable, this
means that ki1(0; 0) 6= 0.

ii The change of coordinate z = T (x) is a global dif-
feomorphismbecause @T

@x
is an upper triangular ma-

trix which all it's diagonal elements are equal to
one.

Proposition I The Assumptioms (1.1) and (1.2)are sat-
is�ed by the sub-system (26).

Proof
Since the system Xi+1

k+1 = F i+1(Xi+1
k ) converge globally

asymptotically and zik+1 = zik in the case where vi = 0
then the set 
 is de�ned by


 = f(Xi+1; zi) = (0; zi) zi 2 Rg:

In the same way, the sub-system is de�ned by

S = f(Xi+1; zi)= 2ziki1([F
i+1]j(Xi+1); 0)

+
@Vi+1

@�
j�=[F i+1 ]j (Xi+1)bi

j = 0; 1; : : :g (27)

By using the fact ki1(0; 0) 6= 0, we conclude that 
\ S =
f(Xi+1; zi) = (0; 0)g.

Furthermore,

�Vi(X
i+1; zi) = Vi+1(F

i+1(Xi+1
k ) + bivi)

� Vi+1(X
i+1
k )z2i (k + 1)� z2i (k):
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Then,

�Vi(X
i+1; zi) = Vi+1(F

i+1(Xi+1
k ))� Vi+1(X

i+1
k )

+ l(Xi+1
k ; zik; vi)vi (28)

with

l(X
i+1
k ; z

i
k; vi) =

Z 1

0

[
@Vi+1

@�
j
�=F i+1(X

i+1

k
)+bivi�

]bid�

+ 2z
i
kk

i
1(X

i+1
k ; vi) + [k

i
1(X

i+1
k ; vi)]

2
vi:

By using the Theorem (1.3), and from the fact that the
linear approximation is stabilizable, we can see that the
controller

vi = ��i(X
i+1
k ; zik)l(X

i+1
k ; zik; 0) (29)

where �i is de�ned as in the work of Mazenc [19] ensure
the local exponential and global asymptotic stability (26).

Summarizing, we can give the following theorem

Theorem 2.1 The controller u = axn +
P1

i=n�1 vi
where a < 1 ensure the global asymptotic and local expo-
nential stability of the class of system (7) in closed loop.
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