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Abstract: - Fuzzy gain-scheduling is a special form of modcl-based fuzzy control that uscs linguistic rules and
fuzzy rcasoning to determine the controller parameter transition policy for a dynamic plant subjcct to large
changes in its opcrating state. Issucs of stability and overall dynamic behavior arc resolved using conventional
modern control techniques. The design of a fuzzy gain-scheduling controller for a simple nonlincar process illus-

trates the techmque.
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1 Introduction

Two distinet trends in the design of fuzzy controllers
have evolved in the past two decades or so. The first is
bascd on heuristic knowledge of the control policy that
15 required to control a plant. This technique does not
require deep knowledge of the controlled plant in order
to be applied successfully [1.3.5-8]. This featurc has
led Lo extensive adoption of hceuristic fizzy control in
industry and manufacturing where such knowledge is
usually lacking In general. heuristic fuzzy control is
possible only 1f the control policy is known a priori.
Thus for new processes. where prior knowledge is un-
avanlable, heuristic fuzzy control is not a suitable can-
didate 1t 15 also clear that the heuristic approach can
neither resolve the issue of stability of the closed Sys-
tem nor speaity its dynamic performance [12]. This
approach is clearly casc-dependent and it is thercfore
impossible to gencralize on the performance of this
class of controllers from a knowledge of their behavior
m other applications.

The Iimitations of the heuristic approach led to a
scarch for more rigorous methods that could combine
Zadeh’s Fuzzy Logic [13.14] and Modern Control
Theorv. One such outcome has become known as
Model-bused Fuzzy Control. a technique that has been
applicd with suceess in a number of practical situa-
tions such as high-speed trains. helicopters. robotic

arms ctc. The technique assumes the existence of an
explicit model of the controlled process of sufficient
fidelity from which lincarized models can be derived
for every nominal operating state. The hyvbrid modcl-
bascd approach is thus a fusion of sofi control tech-
niques based on Computational Intelligence [4.9.10]
and hard control techniques based on Modern Control
Theory and offers distinct advantages where closed
system stability and dynamic characteristics must be
assured.

Gan-scheduling is a well-known technique of n-
dustrial control [2] and is used when a plant is subject
to large changes in its operating state. a situation that
ts typical in industry. Large changes in the opcerating
statc lcad to corresponding variations in the parame-
ters of the lincarized models of the plant about these
operating states. It is well known that it is not possiblc
thercfore to design a controller to operate satistactorly
at onc opcerating state and expect it to perform cqually
well elsewhere without re-tuning it. Closed svstem per-
formance is degraded since the controller cannot track
the changes in the operating states.

Considerable cffort has gone into developing con-
trollers that can track the variations in plant parame-
ters with a view to achicving invariant operation
throughout the domain of opcration of the plant
Adaptive controllers are onc such approach. vet cven
these controllers do not always demonstrate satisfac-



tory performance throughout the domain of operation
of the plant and may. on occasion, lose control alto-
gcther. Robust controllers.  another approach, also
have their mitations since they must deal with system
dvnamics that vary over a wide range though using
constant parameters only. Clearly this class of con-
trollers can only operate satisfactorily over a limited
domain.

This paper applics Fuzzy Gain-Scheduling to the
problem of transfering the state of a nonlinear process
trom an mitial state to a final state where the lincarized
process dynamics arc very different from those at the
mitial state. Fuzzy Gain-Scheduling assures smooth
transistions n the control law, yet maintains essen-
tially invariant closcd system characteristics.

2 Conventional Gain-Scheduling

In conventional gain-scheduling controllers the pa-
rameters (1.¢. gains) of the controller are varied usually
as a function of some exogenous variable in an attempt
to compensate for the changes in the operating state of
the plant through stepwise changes in the controller
parameters. A typical example of conventional gain-
scheduling it which the gains of the controller are
changes step-wise can be found in aircraft surface
control. Here. as the altitude of the aircraft increases,
the scnsitivity and conscquently effectivencss of the
control surfaces decreases becausce of the thinning air.
‘This in turn requires a greater control action to achieve
the same overall responsce. If altitude is the exogenous
variable that adjusts the controller gains. then the con-
trolling cffeet can scheduled to be independent of the
altitude. The result of step-wise changes in the con-
troller parameters may, however, result in bumpy mo-
tion cvry time the controller parameters are adjusted.

Automatic transmission in autos is another exam-
ple. The step-wise changes in the gear ratios. however
arc often causes of uneven and jerky motion. To avoid
these sudden changes and to provide smooth accelera-
tion. a number of auto manufacturcrs today offer infi-
nitely variable ratio transmissions. Yet another cxam-
ple 1s a robotic arm whosc dvnamics change as it is
extended.

3 Fuzzy Gain-Scheduling
Fuzzy gain-scheduling. which is a denvative of
Model-Based Iuzzy Control. offers a simple vet ro-

bust solution to the problem of controlling a non-lincar
plant subject to large changes n its operating statc. In
this technique. fuzzy linguistic rules and fuzzy infer-
ence mechanisms arc used to cstablish the required
control policy. Given cexplicit models of the plant and
the corresponding control laws at a finitc sct of states.
the technique infers the control laws at all states in
between. The resultant state-weighted control policy
leads to smooth state transition.

4 Model-based control

In the mid-1980s Takagi and Sugeno | 11] proposcd
using fuzzy reasoning to specify the control law of a
statc feedback controller so that the overall system had
guaranteed properties. The controller that Takagi and
Sugeno proposed was characterized by a sct of fuzzy
rules that related the current state of the process to its
process model and the corresponding conrrol law.
These composite rules have the genceric form:

R:1F (current state)
THEN (fiuzzy process model)
AND (fitzzy control policy).

If. now, it is possible to generate a sct /) of known
nominal states x'. for which a corresponding sct S of
linearized modcls of the controlled plant is determined
through first principles or identification. then fuzzy
gain-scheduling can offer distinct advantages. In this
scheme, the transition from on¢ nominal state to an-
other is smooth since the system parameters can be
made to vary smoothly along the trajectory. These two
sets arc clearly invariant with changes in the nominal
states. For any nominal statc that docs not belong to
the set D, an approximating description can be derived
from modcls belonging to the sct without recourse to
further linearization.

For cach nominal statc x the locally lincarized
model is stored in the model base S while the corre-
sponding control policy is stored in the control policy
base UJ. The nominal statcs x' in the nominal stares
base D can be conveniently chosen to be the centers of
the fuzzy regions X i.c.. the states x'e X" at which
the values of the fuzzy membership valucs arc unity.
ie.

p, L (x) = min(L 1, ) = 1



Consider the crisp process state vector x define on
a closed. real sct X. The fizzy state variables x; are
fuzzy scts defined on X. The valucs of these variables
are termed the fizzy values of the fuzzy state variable
and arc written as the fuzzy sct

(DXH = J‘l\v IU(I‘,\' (x) / X

For cvery fuzzy value of x, there cexists a corre-
sponding membership function zgy,(x). which specifics
the membership value of the crisp value x," of this
variable. The wniverse of discourse is defined as the
set:

IX, {oX,.oX,. oX, }

where £, 1s the number of fuzzy values x,. In order to
simplify the analysis that follows. it will be assumed
that:
*  the shapes of the fuzzy scts of ®X; arc identi-
cal for all /.
= the number of fuzzy numbers k; &,
and that
oY, =X, =0X =0X

Examples of such triangular fuzzy scts are shown in
Figurc 1.
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I':i;,rm'c 1. l"uzzy sets of the state x,

The state vector x of the controlled plant is defined
over some space. Every crisp value x* of the state
veetor corresponds to a specific state in state space. In
the case of fuzzy modcl-based controllers, the states
takc on fuzzy values and conscquently the concept of
state space must be modified to account for the fuzzy
valucs of the state vector. Knowing that every fuzzy
variable has a finitec number of fuzzy values. then a fi-
nitc numbcer of fuzzy vectors that result from the com-
binations of the fuzzy valucs can be generated.

In the model-based technique. cach clement of the
crisp statc variable x is fuzzified as in the heuristic
fuzzy control casc. In cach fizzy region of fuzzy state
space. a rule uniquely defines the local plant model in
that region. e.g..

Rs :1F x ®x' THEN ¥ f(x'u')

The symbolism x - ®X" implics that the state of the
process x belongs to the fuzzy region ®X'. The consc-
quent of cach rule describes an explicit local model of
the process in the corresponding fuzzy region (.Y

Thus at the centers of cach fuzzy region. the line-
arized model defined in the conscquents of the fuzzy
rules with X' in place of x* The sct of rules which de-
scribe the fuzzy plant model reduce to:

R TF x“®X THEN x' A'(x-x") B'(u- 1)

where xeR” and ©eN™. while the plant matrix pair
(A.B) uniquely specifies the lincarized plant. Likewise
the control policy. or process rules. is given by the lin-
car state feedback law:

R TF x*=®X THEN © K(x-xY) !

where the gain matrix K(x.2/) i1s computed so as to en-
sure stability and specified closed svstem transient per-
formance through suitable pole-placement on the basis
of the lincarized closed system defined in the corre-
sponding fuzzy region 1.X. The fuzzy modcl of the
plant is now specified in terms of the deviations of the
statc and the corresponding control actions from their
nominal valucs. i.c.:

X = Zu"(x‘l)-[A'(x~x")+ B (- u')

The overall control law is given by:

u= Z w/ (x) K (x=x"y+ u!
J

The closed system model and the overall control
law arc both scen to be linear since the normalized
membership functions w'(x‘) and w/(x“) arc constants.
The closed system is therefore given by:

=S w e (xD[a B v
! J



It follows that
2w =3 wix) =3 % wixw (x) = 1
; 7 1 7
Here
A":ZW‘(X‘{)A‘Z dezwl(xd)Bz
and

K= w'(x)K’

In an analogous way
x=A'x-x")+ B (u-u)
and
u=K'(x-x")+u!
which arc lincar state cquations involving the state and

control input deviations from their nominal states x,
and 1, respectively, while

of (x,u
A":A(x",u‘i):——f'( )

Ox o

X X u-u

and

of (x,u
I)’":b’(x",u"):——f'( )

01‘ x:x“tu llJ

It 1s noted that the overall closed system is stable at
the  nominal statc x‘ if and only if
Rel{h, (A%)} <0 m=12.. .n. where 4, arc the cigen-

~ : { d pd
valucs of the matrix 4* A4“+ BK".

3 The Fuzzy Process Model

It 1s obscrved that whereas the antecedent of the fuzzy
process rules are similar to those used in the heuristic
fuzzy control casc. the consequents are analytical ex-
pressions that describe a process model. The process
rules can be expressed in terms of the clements of the
CrISp process state as:

I(\',f IF X, (Dx‘[ AND X> (Dxlg AND
THEN x'  fi(x.u)

X, Ox,

In any fuzzy rcgion ®X" the process can thus be
specificd by:

X' =p(x) - f (xou)

where

s (x) = oy, (x)A Hoy (X )nonp o (x,)

= min(/u(b‘\—l' (XI )’ Illq»).":' ('x.’ )’- ) tu (Xn ))

arc the degrees of fulfillment of the local lincarized
models of the plant using Mamdani's fuzzy composi-
tional rule [7].

For cach nominal statc of the proccss. the state
cquations of the closed system arc determined. Using
the set of fuzzy process rules the fuzzy plant model of
the overall process is the weighted sum of the local
linearized plant models 7i(x.u#) i.c.

oy

-
v,

X= Z we (x) f(x,u)
where
py (x)

DoHg(x)

arc the normalized degrees of fulfillment or process

w(x) = elo. 1]

function weights. Clearly the sum of the process func-

tion weights is unity. 1.c.

Z\VS'(X) =1

4 The Fuzzy Gain-Scheduling Law

For every antecedent there cxist rwo conscquents. the
second one of which specifics the state feedback con-
trol law that must be applied. This. of coursc. assumcs
that a// states are measurablc. often a fundamental re-
striction of the technique in practicc. Where it is not
possible to measure all the state variables then obscrv-
ers or estimators may be used to provide the missing
statcs.

The sccond consequent of cvery rule in the fuzzy
region ®X specifies the control law and has the ge-
neric form:

Ry : IF x- ®x THEN «
while the control law is given by:

' = ;z(;'(x)'g_,(x)

£i(x)

where



i1 (x) = A, (/1‘1‘“, (x,))
min( oy (X, )p, (x5, N (x,)).

The overall control law is the weighted sum:

= Z W () g (x)

where w? arc the corresponding control weights.

S Application: Fuzzy gain-scheduling
control of a simple nonlinear
process

Many idustrial processes exhibit dvnamic bchavior

that depends strongly on their nominal operating state.

Beacause of their nonlincar nature the performance of

any controller that 1s tuned at any nominal statc would

clearly be degraded at any other state not in the prox-
ity of the mitial nominal state.

Fuzzy gam-scheduling is an cftective way to adapt
the parameters of the controller as a function of the
state so that the performance of the process be cssen-
tially invariant in state space.

In order to describe the procedure i simple terms.
it will be assumed that the process can be modeled by
a scalar state cquation. Clearly the technique can be
extended to the multivariable case.
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Iigure 3. Step responses of the process
at the end states

The objective of the controller is to foree the proc-
ess to move from some initial statc to some terminal
statc in a smooth manncr while simultancously satis-
fying given performance specifications. It will be as-
sumed furthermore that the process model can be line-
arized at (a) some initial (normalized) state »° 0 and
(h) at a second (tcrminal) state x* /. In casc («) the
process rule (i.c. lincarized modcel) of the process s
taken to be:

R 1F ' 0 THEN
x=[,(x.)=-05x+05u

whilc in casc (h) the modcl of the plant differs radi-
cally and the process rule is taken to be:

R" IFx' I THEN
x=f,(xv,u)=—x+2u

The step responses of the plant for the two cascs
arc shown in Figure 3. In casc (¢). the dynamics of the
plant arc cvidently slow with a normalized time con-
stant of 72 whercas in case (b). the response 1s much
faster. with a time constant 7° (.5 and the scnsitivity
to anyv control action 1s incrcased.

Fuzzy gain-scheduling permits adaptation of  the
gain of the controller as a function of the state
smoothly instcad of in a step-wisc manncr as in con-
ventional gain-scheduling. To achicve this. consider
the fuzzy generic control rules given below for the
two nominal statcs:

Xy k(ex
2o X hs(ex

R 1F x' 0 THEN u,
R’ TF x* | THEN u;

In order to obtain the desired closed svstem re-
sponsc at hoth statc extremes. state feedback gains
k; 0.6, k;=0.4 arc sclected so that the cigenvalucs of
the closcd system arc at (-0.2. 0) in hoth cascs. This
implies that in the vicinity of both nominal states. at
Icast. the closed svstem bchavior will be identical
Idcally 1t is desirable to maintain the same closed sys-
tem bchavior in all states in between and ideally fore-
ing the closed system behavior to be independent of
the state.

To simplify the analysis. let the simple fuzzy
membership functions shown in Figurc 4 indicate /1w
the transition of the dvnamics of the plant must follow



the state. It is cvident that for states closc to the initial
nominal statc. the model of the plant is predominantly
of type (¢) but as the norm of the state increascs the
tvpe (¢) model fades gadually into case (b) until

d

v 2 Jat which the model is entircly case (b).
/
Ha e
0 Iigure 4. I'uzzy sets of the ]

fuzzy gain-scheduling controller

The gain-scheduling fuzzy scts for two nominal
states arc shown in Figurc 4. These can be described
analvtically by g, (x) /-x and p(x) x. It 1s clear that
w, 1> 1 Vx The overall fuzzy process model 1s thus
given by the weighted sum:

ow(0.5(x XY+ 05u)+w,(—(x = x*)+ 2u)

where w, and warc the normalized membership func-
tions:
S B
" Myt HS 3
The overall  fuzzy  control law is  therefore  the
weighted sum:
m-—-06w,(x— xy+ 04w, (x— x4

The fuzzy gain-scheduling controller provides the
control actions to force the closed system to follow the
desired policy for all values of the state. The responsc
of the closed svstem to a large step demand in the
nominal statc from x 0 to x x / is shown as tra-
jectory (h) in Figure 5 while for comparison trajectory
() shows the response of an invariant system gov-
crned by:

X=-0.2x+02u

As a final notc. it is cvident that since the resultant
closed svstem is nonlincar. it is unrcasonable to expect
the step responses in Figure 5 to be identical. It 1s
noted. however. that in the proximity of x 0 and x - x*
the response of the closed svstem approaches the re-
sponsc of the invariant system.
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Figure 5 Responses of (a) the invariant system with
the ideal dynamic characteristics and (b) the fuzzy

gain-scheduling controller
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