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Abstract: - A hardware implementation of the neo-fuzzy neuron with the learning mechanism by the analog
technology and its application to the on-board real-time prediction of time series are described.

A neo-fuzzy neuron (NFN) is proposed for a learning machine of non-linear relations and dynamics. The
NFN is produced by a fusion of the fuzzy logic and the neuroscience. The NFN describes the non-linearity of a
system with a linear conjunction of the non-linear functions which is described by the fuzzy if-then rules. Its
advantages are the high-speed learning exceeds more than 100 times of that of a conventional multi-layer neural
networks and the guarantee for the convergence to the global minimum on the error-weight space.

In this paper, the NFN hardware system with the learning mechanism can be implemented by using the
analog fuzzy inference chip developed by the authors and discrete components. The mechanism for weight
updating in learning can be implemented to the simple circuit by using the characteristics of MOS transistor. The
operation speed faster than 1 usec has been achieved. The performance of the proposed hardware has been
confirmed by the experimental results of the on-board prediction of time series. Its efficient learning ability is
shown for the adaptive estimation of signals that are generated by non-linear dynamical systems. The maximum
error of the on-board prediction of one-step ahead is under several percentages in full scale of input range.
Furthermore, the NFN acquires system dynamics of unknown systems as linguistic rules.

Key-Words: - analog hardware, prediction, on-board learning, fuzzy system, neural networks, adaptation, global
minimum, high-speed learning IMACSIEEE CSCC'99 Proceedings, Pages:4401-4406

The authors focused on the special features of fuzzy

1 Introduction
Recently, an acquisition of the system dynamics from
unknown systems by using the observed data is
concerned by the researchers [1]. The machine
learning is used as the popular way to obtain the rule
of unknown system. An artificial neural network is
used as a learning mechanism. Its drawbacks, from
the real-time viewpoint, are a consumption of a large
amount of learning time and low convergence to the
global minimum.

On the other hand, several approaches combining
the fuzzy logic with the artificial neural networks
have been proposed by many researchers [2,3,4].
Almost of them are just combination of each
technology. Therefore, the drawbacks of the artificial
neural networks are still remained.

logic and neural networks such as the rule-based
approximate reasoning and the learning ability. The
neo-fuzzy neuron (NFN) has been proposed [5],
which is produced by a fusion of the fuzzy logic and
the neuroscience and not just a combination of them.
Its advantages are the high-speed learning of more
than 100 times of that of the conventional multi-layer
neural networks and the guarantee for the
convergence to the global minimum on the error-
weight space [6]. Since almost applications of the
NFN execute on a digital computer in serial manner,
the ability can not be shown efficiently.

In this paper, a hardware implementation of NFN
with the learning mechanism by the analog
technology is proposed. It operates in massively
parallel. The performance of the proposed hardware
for real-time applications has been confirmed by



experimental results of the on-board prediction of a
discrete time-series.

2 Structure of the Neo-fuzzy Neuron
The NFN describes the non-linearity of a system with
a linear conjunction of non-linear functions, each of
which is represented with a set of fuzzy if-then rules.
The structure of the n-input 1-output NFN model is
shown in Fig.l. When the complementary
membership function is employed in the antecedent
and the singleton in the consequent, the output of the
NFN y can be expressed as

y=2 1w =2 X uww, ®

where f(-) is a non-linear function, so called the

non-linear synapse, t, and W, is the matching
degree between the input x; and the antecedent and
the weight of j-th fuzzy rule of the i-th non-linear
synapse, respectively.

The gradient decent method [2,7] is used for
learning of the NFN. The weight w; is updated by

Eq.(2).

szj =-n (yk - dk) .uij(xik) ) (2)
where 77 is a positive number called the learning
constant which determines the rate of learning and
x;,¥ and d, are the input, output and teacher’s
signal of the NFN at time k, respectively. For Eq.(2),
the weights should be properly initialized (e.g., by
assigning 0 as the initial weights) before the learning
precedes.
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Fig.1 Structure of a n-input 1-output NFN.

3 Hardware Implementation of the

NFN with a Learning Mechanism
The n-input 1-output neo-fuzzy neuron hardware with
a learning mechanism is described with a linear
conjunction of n single-input single-output non-linear
synapses. So the single-input single-output non-linear
synapse model with a learning mechanism has been
implemented in this paper. The proposed hardware
consists of three blocks, the non-linear synapse unit,
the summing unit and the learning unit, as shown in
Fig.2.
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Fig.2 Single-input single-output NFN hardware with
a learning mechanism.

3.1 Non-linear Synapse Unit

The non-linear synapse unit employs a fuzzy
inference, which consists of the membership function
circuit [8] and the weight circuit.
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Fig.3 Membership function circuit.



The membership function circuit is shown in Fig.3,
which is realized by using a part of the analog fuzzy
inference chip FP-9000 developed by the authors in
1993J8].

The weight circuit designed by using a digital
potentiometer [9] that works as a pulse-controlled
variable resistor and a memory device. Fig.4 shows
the block diagram of the weight circuit. The
resistance of the potentiometer can be changed by the
pulse signal labeled /NC.When a U/D is high, its
resistance is increased and low decreased. The INC,
U/D are produced by the weight update circuit and
the error detection circuit, respectively. The accuracy
of the NFN hardware mainly depends on the
resolution of the weight circuit.
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Fig.4 Weight circuit employing a digital
potentiometer.

3.2 Summing Unit

The summing unit aggregates outputs of all the non-
linear synapse units, which is realized by an ordinary
adder circuit with op-amps. For input-expansion of
the NFN, no additional summing unit is necessary
because that can be used commonly.

3.3 Learning Unit

The learning unit updates the weights by the gradient
decent method, which consists of the error detection
circuit and the weight update circuit.

The error detection circuit, as shown in Fig.5,
generates the error voltage V., corresponding to a
difference between the output of NFN and the
teacher’s signal and a sign of the error U/D. Vi,

and U/D are represented as

VERR:_VBI_‘Vd_Vy‘r 3)
~ | 1L (V,=-V,>0)

UD=\ 0 w,-v,<0) - (4)
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where ¥7,, V,; and ¥, are the output of the NFN

hardware, the voltage corresponding to the teacher’s
signal d, and a bias voltage for compensating of a

threshold voltage Vi, respectively.
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Fig.6 Weight update circuit.

For the gradient decent method, the weight can be
updated according to Eq.(2). The update of each
weight should be achieved in parallel with learning.
Since EQ.(2) contains a multiplication, its
implementation causes an increase of hardware size
and a decrease of the operation speed. We propose
the weight updating mechanism constructed with the
simple non-linear multiplier by using the
characteristics of MOS transistor as shown in Fig.6.
The weight resistance can be represented as the
following Egs. ,

AR =SGN-AR- P, | ©6)
_[+1 wib=1)
SGN {—1 (UID=0) * ()



where AR;, AR are an update resistance

corresponding to j-th rule of the non-linear synapse
and a unit resistance of the digital potentiometer,
respectively. P, , is a number of updating pulses

during a learning period with 7, remaining low.

Since the input of NFN is fixed for learning (updating
weights), V7, ; corresponding to matching grade of

the input and the antecedent is constant. Therefore,
the frequency of the updating pulse can be a function
of V., as described by Eq.(8).

ﬁ’ulse,j(VERR) =K gV Vu, j) =K &Virg) (8)

where g(-) is a non-linear function, as shown in
Fig.7, is composed of pMOS’s and nMOS’s V- I,
characteristics [10], and K, K’ are coefficients.
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Fig.7 Relations between the frequency of weight
updating pulse and the error voltage.

3.4 Single-Input Single-Output Neo-Fuzzy
Neuron (NFN) Hardware

The single-input single-output NFN (non-linear
synapse) hardware with the learning mechanism has
been developed as shown in Fig.8 (a). The
membership  function in the antecedent is
programmable and can be assigned up to twelve
labels. The input signal of the NFN hardware ranges
from 2.5-7.5V. The teacher’s and the output signals
are represented by voltage ranging from 0-2V.

The operation speed of the proposed hardware
achieves faster than 1usec as shown in Fig.8 (b).
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Fig.8 (a) Single-input single-output NFN hardware
with the learning circuits; twelve labels in the
antecedent are available and (b) its step response.

4 Experimental Results

In order to confirm the performance of the proposed
hardware, the on-board prediction of the time series is
examined.

4.1 Prediction System

Fig.9 shows the prediction system of one-step ahead
where the single-input single-output NFN hardware is
employed for the learning mechanism.



When y(k) is fed to the NFN hardware, the
hardware produces the predicted value y(k+1) at
time k+1. At the next time k+1, the true value of time
k+1 is observed. So the NFN hardware updates the
weights by learning with »(k+1) as a teacher’s
signal. After that, the NFN hardware repeats with
prediction and learning in the same manner. In this
learning procedure, the system converges to the
optimum state as time goes on. Therefore, this
method is called the adaptive prediction.

The time series, as shown in Fig.10, can be created
from the non-linear dynamical system described by
Eq.(9) on a personal computer.

Y+ 1)=4{l-yk)}- y(k) k=0,1.2,... (9)
This non-linear function is so called the logistic

function, which is well known to generate a chaotic
behavior [11].
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Fig.9 On-board real-time prediction system.
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Fig.10 Time series for learning and prediction.

First several steps of the time series are used for the
learning to identify the system. That data set of
digital signal is converted to analog voltages through
a 12-bit D/A converter, and fed to the NFN hardware.

4.2 Adaptive Prediction of Time Series
Experimental results of the on-board prediction of
one-step ahead and its error are shown in Fig.11 (a)
and (b), respectively. In the experiments, five labels
are used in the antecedent of the non-linear synapse.
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Fig.11 Prediction results of one-step ahead by the
proposed single input single output NFN hardware
with five labels in the antecedent. (a) Predicted
results; ----, true time series; ——, predicted time
series, and (b) its error.



The prediction error is decreased quickly as shown
in Fig.11(b). Finally the error converges to about
several percentages in full scale of an input range,
which depends on the resolution of the potentiometer
(equivalent to 7bits in this case).

The prediction time of one-step ahead is about
0.6msec, almost of which is spent for data
transferring between the proposed hardware and the
personal computer. The net operation speed (which
includes the learning, and excludes the data
transferring) is less than 160usec. Therefore, the
proposed hardware seems available for practical

applications of an analog signal processing in real
time.

5 Conclusions
The analog mode NFN hardware with the learning
mechanism is described. The proposed hardware
achieves high-speed operation enough for the real-
time applications and its performance was confirmed
by experimental results for the prediction of time
series that is produced by the non-linear dynamical
system.

The advanced version of the NFN hardware is now
under implementation to a silicon chip for practical
applications and will be reported in the near feature.
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