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Abstract : This paper describes a neural modeling of a thermodynamic system. It
presents the training of neural networks, based on the theory of backpropagation,
like the Levenberg-Marquardt method, to model a turbocharger diesel engine.
The model contains several static and dynamic neural blocks, corresponding to
the equations of the engine. The paper describes the algorithms of learning and
the application to the real system.
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1 Introduction

Neural networks are subjected to continuous
researches during the last years. For instance, they
are used for modeling [9][4][7], control, vision and
diagnosis [11]. They bring many non negligible
important benefits, compared with classic ones,
whose theoretic developments are not always easy,
in front of complex systems. Among the advantages,
neural networks can describe or control nonlinear
complex systems with precision, due to the fact that
they include themselves nonlinearities in their
structure. Moreover, using them sometimes allows
avoiding difficult mathematics analysis, thanks to
their simple structure (nodes and connections).
Obviously, they need to be theoretically studied.
Especially, theoretical analysis is done to study their
stability for controlling linear or nonlinear systems
[13]. One benefit of neural networks he theory is the
same for a large class of systems, while Lyapounov
theory need for instance to consider the class of the
system. In this paper, we applied neural techniques

to a turbocharger engine. Automotive must indeed
strict constraints concerning the exhaust emissions.
Our objective is to find an optimal control
minimizing pollution and consumption. But the
equations are complex and non-linear [1]. This
explains why artificial neural networks are used in
modeling. The present paper only focuses on
modeling of the system.
It is presented as follows: section 1 presents the
theory of neural network for modeling the behavior
of the engine. Section 2 describes the neural optimal
control theory used in our application, with a first
part concerning the learning algorithms, and the
second, the structure identification of neural
networks. Section 3 shows the application of neural
modeling to the diesel engine, which includes some
modifications in the learning procedures. The first
part of this section describes the diesel engine
operating, while the second focuses on the model
construction of the engine.

2 Neural Network Modeling



Among the advantages of the neural networks, is
their capacity to model the behavior of nonlinear
system. This is due to the fact that their structure
contains nonlinear simple elements: the nodes and
their nonlinear activation function.  Neural modeling
consists in finding an optimal neural network
describing the system, this means the value of the
parameters, and the structure of the network. Some
learning algorithms, whose aim is to make the output
estimation of the network equal to the corresponding
state of the real system, calculate the parameters or
weights. The structure is selected by studying the
network that gives the best results after learning.

2.1 Neural network learning

2.1.1 Static networks

The learning consist in calculating the weights such
that the estimated output is closed to the
corresponding real state of the system.
To satisfy this objective, learning algorithms
minimizing the following quadratic criterion are
used:
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Thus, the error between the estimation and the real
state is minimized. The simplest method is the
backpropagation learning [9][10][3]. This algorithm
brought to other more complexes but efficient
methods that converge more rapidly. The updating
rules are as follows:
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where iW  is the parameter vector after i updates,
)( iWE∇  is the gradient of the quadratic criterion to

minimize, defined as :
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 thus, we have :
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In (1) the term R appears. It depends on the learning
algorithms. Three of them are describe here:

• The gradient backpropagation :
 R=I, identity matrix.
The gradient backpropagation is rarely efficient.
Choosing the identity matrix is incompatible with the
different scales between the inputs and the outputs.
The updating rule comes from the development of
the criterion at the first order :
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where Wi is the parameter vector after i update
thus
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Minimizing E is the same as minimizing ∆E  and
then we obtain :
 [ ] iWWWEW =∇−=∆ )(.µ (5)

• the Gauss-Newton algorithm:
It comes from the development of the criterion E to
the second order :
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By searching the variation of the parameter vector
∆W  that brings the greater decrease of the criterion,
we can write :
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The corresponding algorithm is the Newton
algorithm. To permit convergence even for points far
from the minimum, the term µ  is added, and then
we have :
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In the case of the Gauss-Newton algorithm, R is an
approximation of the criterion’s hessian, whose
elements are presented in (9) :
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(7)
ε  is a residual term. By neglecting the second order
terms, we have :
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or, under a matrix form :
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If this algorithm is more efficient than the precedent
one, some problems like the singularity of the matrix
R. The following method can avoid this problem.

• The Levenberg-Marquardt algorithm :
R=H+β.I; H is defined in (9). β is a scalar.
The Levenberg-Marquardt algorithm [6][3][10]
avoid singularities, and permits a more rapid
convergence of the parameters. When β=0, we
obtain the Gauss-Newton algorithm, and when β
goes towards ∞, it tends to the gradient propagation.
In our application, we use the including the
following rate, as presented in [8] :
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• If r is near 1, it means that we are near a
minimum. Then β is decreased to approach the
Gauss-Newton direction.
• If r is near 0, parameters are far from the
optimum. β is increased, and the direction search is
the gradient one.

2.1.2 Dynamic neural networks learning

The learning is different for prediction or simulation
models. In the first case, the delayed inputs of the
dynamical network are independent of the weights,
and can be considered as external inputs. In the
second case, the delayed inputs depend on the
weights. Figure 1 shows the dynamic neural learning
scheme for a simulation model.

Fig. 1. Dynamical neural network learning.

The updating rule includes now the derivative terms:
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ny is the order of the model.

2.2 Neural network structure
identification

A dynamical network is presented in figure 2. It
contains layers, connections, and activation functions
that are to be fixed. For our application, full-
connected networks are used.
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 Fig. 2. Recurrent neural network structure.

Several activation functions can be employed.
Networks containing nodes with radial basis
activation functions give useful responses on a
restricted domain of its input. They seem to be
efficient for classification problems. Another
frequently activation used for modeling is the
sigmoid function :
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Some authors like [12] vary the parameter T,
observing some improvements. But it is generally
considered as a useless additive parameter that is
added to the others. We used the sigmoid function
for our application, with the value T=1. To find the
structure, several networks are trained, with different
order and different node number. The network that
gives the best criterion on test and validation data is
selected, as shown below :
Fig. 3. Structure identification.

The loop consists in training the network for several
numbers of nodes, nh, and orders. The network,
which gives the smaller criterion on the training and
validation data, is then selected.

3 Application to the Engine

3.1 Description of the diesel engine

The engine used in our application is a BMW’s one.
It can be decomposed into subsystems as presented
in diagram (4). The atmospheric air goes through the
compressor, the air intake manifold, and the
combustion chamber.
Fig.4.Turbocharged diesel engine plant.

The injection pump injects fuel in the combustion
chamber while the valves are closed, and the mixture
burns. The gases produced by the explosion passe
through the exhaust manifold and the turbine and

goes outside. Two states have been modeled : the
engine speed, R, and pressure in the intake manifold,
P. The only command that we consider is the
position of the accelerator, X.
Modeling of a Diesel engine have partly been
investigated by many authors [5][2]. The
acknowledge of some relations allows to structure
the neural model more easily. After some
simplification, we obtain the equations :
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(12)
X is the acceleration, W the engine speed, P the inlet

collector pressure, fm
⋅

 the fuel flow, cm
⋅

 the inlet air
flow, and Opac the opacity of the exhaust gas.

3.2 Diesel engine neural modeling

3.2.1 Model structure identification

Each equation corresponds to a neural network
model. Static networks model static equations, while
dynamics are modeled by dynamic network. We
applied the method of figure (3), with the
Levenberg-Marquardt method. The following model
structure in figure (5) was obtained. 5 neural blocks
with one hidden layer, compose the complete model
to estimate the 5 states.
The curves in figure (6) present the criterion
evolving according to the structure of each network.
It includes the dynamic model orders (equation 12)
and the number of hidden nodes nh of each network.
The optimal structure is displayed for each curve.
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Fig. 5. Neural model of the engine.
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The structure identification of the speed and pressure
models was modified. Indeed, the two neural blocks
have been learned independently. But after
connecting them for simulation, they can give bad
results. The following figure (9) presents simulation
results after independent training, for a given
structure. While the simulation of each separated
block presents good results, the complete one,
including the two states, leads to unsatisfying results.
The divergence can be explained by the
amplification of small errors on the pressure
estimation, entering in the speed model.
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Fig. 9. Speed / pressure independent training
simulation.

The procedure in figure (10) describes the modified
training: the two networks are successively trained.
The estimated resulting speed is used to learn the
pressure model :

Fig. 10. Training procedure for speed and pressure
model.

Pest / Pm :the last estimated / measured pressure vector
Rest / Rm :the last estimated / measured speed vector

The calculated criterion is displayed on figure 6 for
the training and validation data, in accordance with
the order (on left) and the node number (on right).
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The criterion is obviously higher for validation data,
only used for simulation, and not in training.

3.2.2 Model simulation

Displayed results displayed below are issued from
the complete identified simulation model, with just
the acceleration as input
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Fig. 11. Simulation results.

The precedent results have been obtained with only
the acceleration as global input of the entire model.
They are thus satisfying. Other models can be tested,
without considering blocks like it was done.
Physically, all the states depend on only one
command, that is the acceleration. Thus, each state
can be considered as an output of a black box, that
means a neural network, whose input is the
acceleration signal. The disadvantage would be that
this needs bigger neural networks.

4 Conclusions

This work is realized in the DIVA project
(Diagnostic des Véhicules Avancés-France-), on the
control optimization of exhaust emissions of a diesel
engine. In this article, we presented a global neural
model of our engine. This operation has been
realized with the Levenberg-Marquardt algorithm,
which appeared to be satisfying. Few acknowledge

on our system were needed; this characterizes the
flexibility of using neural network for different
systems. A comparison can be done in the further
between the presented results and those that would
come from another model structured, as proposed in
last section. Our neural model of the engine will be
useful for testing some neural control of the engine.
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