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Abstract: - A novel approach of iterative regularized restoration of images based upon multirate
representations is proposed in this paper. Regularized restoration is a method of solving the ill-posed inversion
problem of image restoration. Inversion of usual degradations without regularization enhances the noise in the
degraded image and may not be employed in practice. Wavelet filter-banks designed upon arbitrarily sampling
lattices are proposed in order to replace the conventional regularization operator (usually a Laplacian filter) in
regularized restoration of images. The proposed method employs a regularization parameter for each of the
decomposition filters in the wavelet filter-bank. Thus it differs from standard regularized restoration methods
which define just one regularization parameter corresponding to the smoothing filter. The regularization
parameters should be estimated in advance or iteratively. A good estimate guaranties a good quality of the
restored image. Statistical techniques like Generalized-Cross-Validation (GCV) may be used for estimating
the regularization parameters in advance whereas the current estimate of the restored image may be used in
estimating the regularization parameters in an iteratively solution of the regularization equation.
     A perfect reconstruction filter-bank can be used to represent the degradation filter. Factorizations of unitary
matrices using Givens rotations allow for efficient representations for a variety of degradations. Should both
the degradation and the smoothing filter be replaced by multirate systems, the restoration problem may be split
into independent restoration problems in each transformation channel. Regularization parameters are evaluated
iteratively in each channel using image information from the corresponding subband and other channel
dependent parameters. Numerical results indicate better ISNR (Improvement in Signal-to-Noise-Ratio) figures
than conventional iterative regularization methods.

Key-Words: - Wavelets; Multiresolution; Filter banks; Regularized image restoration; Iterative methods.

1   Introduction
Wavelet functions exhibit very good localization
properties in frequency and in spatial/time domain
and provide an efficient way  of  representing  1-D
and  2-D signals. Construction of wavelet and scale
functions (mother wavelets) of finite support is
possible by iterative filtering and subsampling [1].
Wavelet decomposition of signals allows for
processing in separate subbands [2]. Several
methods based on multiresolution analysis via
wavelets and orthogonal wavelet filter-banks have
appeared recently in the literature [3] for such
applications as image/speech coding and
compression [2], motion estimation in video
sequences, neural wavelet networks [4], speech
recognition and image restoration.

Digital images are degraded due to motion blur,
defocusing, atmospheric turbulence and long

exposure times, [5]. The linear degradation model
assumes that the degraded image, denoted as y is
related to the original image s through the
degradation matrix K  and additive white Gaussian
noise n

nKsy += (1)
where vectors y, s and n are produced by raster
scanning and stacking of the pixel values of the
corresponding images. These vectors have N2

elements for images having size (NxN) pixels. K  is a
block Toeplitz matrix which expresses the
convolution of the original image with the
degradation filter K(m1,m2) and has dimensions N2

by N2.

Regularized restoration techniques [6] tackle the
ill-posed problem of image restoration by assuming
a smoothing filter as regularization operator and
minimizing a Lagrangian functional which involves



the error and the outcome of the filtering with the
smoothing filter.
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where C is the filtering matrix with the smoothing
filter and � is the so-called regularization parameter.
There are several methods for estimating the
regularization parameter �� like iterative methods [7]
and statistical methods [8],[9]. This paper proposes
an iterative method of estimating regularization
parameters in wavelet channels. The block diagram
of the method is presented in Figure 1.

2 Regularized Image Restoration
Using Filter Banks as the Smoothing
Operator
Regularized image restoration using wavelet filter
banks as the smoothing operator is formulated in the
sequel as an optimization problem. Wavelet
factorizations via unitary matrices are suggested to
decompose the degradation matrix K  into
independent frequency channels. The equation of the
regularized restoration method is solved iteratively
in each of these channels.

2.1 Formulation of Regularized Restoration
as an Optimization Problem

Generalization of regularized image restoration in
multiresolution spaces has been presented in [10].
The restored image ŝ is found by minimizing the
following Lagrangian cost,
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where �0� �1� « �D-1 are the regularized restoration

parameters and T
0W , T

1W  … T
1−DW  are the

matrices of spatial filtering with the wavelets for the
D distinct channels of image decomposition.

Matrices T
0W , T

1W  … T
1−DW  have dimensions

D

N 2

rows by 2N  columns for N  by N images. They

obey the orthonormality conditions by construction,
i.e.
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One derives the regularized restoration equation by

solving the equation, i.e. ( ) 0
s
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taking into account the orthonormality conditions,
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K T denotes the transpose degradation matrix. The
solution of Eq. (5) yields the restored image ŝ.
Further simplification of this relationship is possible
by making certain assumptions regarding the
degradation matrix K . The iterative solution of Eq.
(5) independently in each decomposition channel is
proposed in the sequel should the degradation matrix
be decomposed by a perfect reconstruction wavelet
filter bank.

2.2 Decomposition of Degradation Matrix
into  Wavelet Channels

Several wavelet factorizations like unitary matrices
expressed by Givens rotations are possible for
designing filter banks. This allows for variable
degradations to be decomposed by a perfect
reconstruction filter bank like the one shown in
Figure 2. Matrix K  is written in such a case as
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ZKHUH �D is the sampling sublattice. PûP is a
permutation matrix whose elements take the values
of zero and one and shifts the 2-D channel
degradation filters d0(m’), d1(m’) … dD-1(m’)  in
Figure 2 by  ûP. Permutation matrices allow for
expressing convolution as a sum of matrix products.
The expression of degradation matrix K  in Eq. (6)
implies that the degradation filters in each channel
of the decomposition are independent. Thus Eq. (5)
may be split into D independent systems of
equations as
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Regularized restoration parameters in each
multiresolution channel are denoted as  �0� �1, …
�D-1. Matrices Dc,0, Dc,1…Dc,D-1 are used to convolve,
upon lattice �D, the 2-D series )'(0, mcd , )'(1, mcd ,

… )'(1, m−Dcd , (which are defined as 000,

~
* dddc = ,

111,

~
* dddc = , … 111,

~
* −−− = DDDc ddd ) with the

multiresolution coefficients of the restored image,

sW ˆT
q . Channel filters 0

~
d , 1

~
d  … 1

~
−Dd  are the

reconstruction filters defined as )'()'(
~

00 mm −= dd ,

)'()'(
~

11 mm −= dd , … )'()'(
~

11 mm −= −− DD dd , DΛ∈'m .

Convolution matrices '
0D , '

1D  … '
1−DD  convolve



the channel reconstruction filters with the
multiresolution coefficients of the degraded image,

yW T
q , upon DΛ .

3 Iterative  Solution  of the
Regularization Equation
The block diagram of the proposed iteration is
shown in Figure 1. The iterative solution of Eqs (7)
is proposed as
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This is an extension of the general iterative solution
of the regularized restoration equation presented in
[11],[12],[13]. Regularization parameters are
evaluated iteratively according to the relationship,
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where 02 equals nTn and /q is a small positive
constant. It is necessary for convergence that the
iteration parameter �q, { }11,0 −∈ Dq � , satisfy the
following equation
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where ( )qcqi ,max DI +λ  stands for the maximum

eigenvalue of matrix ( )qcq ,DI +λ .  Thus iterative

parameters �q are channel dependent.

4� Experimental Results
The degradation is assumed to be decomposed by a
perfect reconstruction filter bank upon the quincunx
sampling lattice with sampling matrix
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where Hp(&) is the polyphase matrix of the filter
bank. The factorization parameters are presented in
Table 1. The original image of “Lena” along with its
two polyphase components is presented in Figure 3.

Degradation parameters

d0 �0 �1,1 �2,1 �3,1 �4,1 �5,1 �6,1

0.65 -60 55.5 42.5 -20.5 4.5 4 1 

d1 �1,2 �2,2 �3,2 �4,2 �5,2 �6,2

0.30 -26.5 -71 162.5  6 1 4  

Table 1: Filter bank factorizations according to Eq. (11)
for the degradation

The linear degradation model of Eq. (1) is
assumed. The standard deviation of additive noise is
1 0.01. The degraded image y is shown in Figure
4a. An estimate of the s.t.d. of the noise is obtained
from the flat regions of the corrupted image. This
estimate is used in evaluating 0

2 in Eq. (9) which
yields �(t) vs iteration. Iterative regularized
restoration is carried out as described by Eq. (8) (see
Figure 1� IRU YDULRXV LWHUDWLYH SDUDPHWHUV �0 DQG �1.
The algorith is terminated by the if
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against standard iterative solutions of the regularized
restoration equation that appear in the literature. The
Laplacian is used as the smoothing filter in
conventional methods. The plot of the Mean-Square-
Error (MSE) for all cases is presented in Figure 5
versus iteration. Table 2 gives the values of the
parameters of the iteration as well as the final
improvement in Signal-to-Noise-Ratio (ISNR),
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ˆ
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2

2
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−

−
, for all cases.

Iterative regularized image restoration in
multiresolution channels yields the same final ISNR
for two different pairs ofLWHUDWLYH SDUDPHWHUV �0 and
�1. This value is better than the ISNR value obtained
for conventional iterative regularized restoration.
The restored image of “Lena” with�0 � DQG �1=2 is
shown in Figure 4b. Convergence rates differ in
each case. The evolution of MSE and the values of
the regularization parameters obtained from Eq. (9)
are presented in Figure 7 and Figure 8 for both
multiresolution channels.



5   Conclusion
A novel approach of iterative regularized image
restoration in multiresolution channels is proposed.
A perfect reconstruction filter bank which is defined
upon arbitrarily sampling lattices decomposes the
degradation filter as well as the smoothing filter into
independent wavelet channels. The corresponding
systems of regularization equations are solved
iteratively. The regularization parameters are
evaluated at each iteration step. Restoration results
obtained with the proposed method are better than
results obtained with conventional regularization
methods.

Case Laplacian Filter bank

� ��� �0 ��� �1=1.0 �0 ��� �1=2.0Iteration
parameters

/ ���� /0 ��� /1=0.1 /0 ��� /1=0.1

Number of
iterations

33 45 25

ISNR [dB] 9.3 12.4 12.4

Table 2: Iteration parameters and final improvements in
Signal-to-Noise-Ratio (ISNR) after convergence
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Figure 1: Block diagram of the proposed iterative method
for solving the equation of regularized restoration
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Figure 2: Decomposition of the degradation matrix by a perfect reconstruction wavelet filter bank

a: Original image b: First polyphase component
corresponding to coset vector (0,0)T

c: Second  polyphase component
corresponding to coset vector (1,0)T

Figure 3: Original and polyphase components of  “Lena”  for sampling upon the quincunx sublattice

a: Degradated image by filter bank degradation and
additive noise

b: Iterative restored image with two regularization
parameters (�0=3 and �1=2)

Figure 4: Degraded and restored image of “Lena”
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Figure 6: Regularization parameter for iterative
restoration using Laplacian
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Figure 7: Mean Square Error  for iterative restoration using wavelet filter bank
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Figure 8: Regularization parameters for iterative restoration using wavelet filter bank


