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Abstract- In this paper, dast dgorithm for the lution of one-variable and two-variable Lyapunov's
Equaion is presated. The dgorithm is basedon the useof the FFT (Fast Fourier Transform). The
simplicity and efficiency of the method are illustrated by a numerical example.
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1. Introduction

Fast Fourier Transform (FFT), [1], has been
applied in many problems in systems theory in
order to fadlitate or at least to speed up the
relevant algebraic manipulation.

In [2], the FFT is used in order to determine
the charaderistic polynomial of a ret¢angular
matrix and in [3] the same technique isused for
the cdculation of a Determinant Polynomial.
The extension of thistedhniquein 2-D systems is
given in [4]. The useof FFT for aritrary
transformations of one-variable polynomials and
rational functions is known [5].

In this paper, we ansider the one-variable
Lyapunov

Equaion: A(s) XB(s)+..+ A (s)XB,(s) = C(s) as
well as the two-varable Lyapuov
Equation:

Als.s) XB 5)s +-{A 9.5(XB)s. § =L s.s
. It is not difficult, based on the solution of the
simple Lyapunov
Equaion: AXB+..+AXB,=C, to formulate
algorithms for the olution of one- and two-
variable Lyapunov Equation via FFT.

In Sedion II, the agorithm is stated for the
one-variable Lyapuwov Equdion whereas in
Sedion lll, the algorithm is described in the case
of the two-variable Lyapunov Equation. Finally
one can find some concluding remarks.

2. Solution of The One-Variable
Lyapunov Equation

The Equation in question is:
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In particular, we define the points(l) = w"
A(S) XB( 3.« A 5 XR)s C)s (1) where w=¢€&?""*V and I=0,...r . So, we

where A,...,A arepxp matrices,B;,...,B are  compute ther+1 determinantsdetd %))
vxV matrices,X andC(s) are uxv matrices. where

detG(2( 1) = def A(4))0 B(£))+ .+ A £)0 B( &)
(5)

We also suppose that the various elementg, of
and B, i=1,...n are polynomials ofy andn,
degree correspondingly. The objective here isto .

determine the unknown matriX. To this end, ©f simply det )

we transform (1) to the equivalent equation detGl1) = dek (&) 0 (&M )s 4 A @2urei)y g @)

&(9x= ds) @) (©)

where G(s)= A(90 B( $+..+ A1 H)s If one takes into account that
X is the associate vector to the matkx(that is

T detd §=% g5 where are real
thatx:(xu...>gyx21...x&...>§1...§V) where ¥ o9 Zog 9

is the i,j element of the matriX) as well as coefficients, therg, can be evaluated using the
c(s) is the associate vector to the mai@ixs).  inverse FFT as follows

Also, U denotes the Kronecker (or as also
called direct) product of two matrices as well as

1 r
T denotes the matrix transpose. Si@s) is a Ok =r—+12detG(l)ENk' : k=01...r
=0
(uv,uv) rectangular matrix, ther is given by (7)
or equivalently
x=G(3ds) 3) L |
g =—— S detG()@¥™Y | k=01..r
or r+lts
(8)
So in (4), the denominator polynomial has been
i completely determined.
. adiG(90d 9 %) pletely |
detG(s) In order to evaluate the numerator matrix

polynomial one has to compute the numerical

The computation ok=x(s) could be achieved V@€ of it at the — r+l  points,

via FFT as follows. rr=(n,+n,)(vu-1) also equally spaced on the
unit disc. Similarly, we define the points
First one has to computtetd §. To this end, ()= w"' where w=&2""* and | =0,...r"

we compute it numerically at+1 points where 5o we also compute the+1 adjoint matrices
r=(n,+n,)vp equally spaced on the unit disc. aqjG( |)) where



adi6(41) = adf A(£)0 B( £))+.+ A )0 B @)

9)
or simply adjG(1)

ade(I):adj( %(e—ﬂﬂ/(rﬂj)l] g( éjZTl/(r+]))+“.+ I£< —éZTI/(r+]))D ﬁ —ém/(r+j))

(10)

Taking into account thatdjG(9 = Z G O&
=0

where G, are numerical

matrices,
inverse FFT as follows

_1 |
<i-F:12amQﬁmv ,

1=0

k=0,1,...r'
(11)
or equivalently
G = 1 C ade(l)l]?iZTkll(r+l)
<o +1ZO

k=0,1,...m" (12)

3. Solution of the Two-Variable
Lyapunov Equation

Consider now the equation

Als.s) XE s 9+« A s 5 XB,s)s (Gsjsand ,=0,...1,

(13)
where A ,...,A arepy xp matrices,B,,...,B, are
vx Vv matrices,X and C(s) are uxv matrices.

We also suppose that the various elementg, of

(non polynomial)
thenG, can be evaluated using the

and B, i=1,...n are polynomials of,m and
n,,m, degree ins,s correspondingly. In order

to determine the unknown matriXX, we
transform (13) to the equivalent equation

G(s,s) = d¢s,s) (14)
where

G(s.s)= Als 90 B( 5 pr.+ A 5)8 [B,s)s

, X is the associate vector to the matdxandc
is the associate vector to the mat@ix X is also
given by

x=G(s,3) ds.s) (15)

or

= 2dic(s,5)0¢ 5 9

detG(s ,s) (16)

The computation of x=x(5,s) could be
achieved via FFT as follows.

First one has to computgetG(s,s). To this
end, we compute it numerically &t +1)(r, +1)

points, where 1, =(n,+n,)vu and

r,=(m+m)vu, equally spaced on the unit
bidisc. In particular, we define the points

Z1( |1) = W1‘|1 where W, = ej2n/(r1+1)

andl, =0,...1,

and the pointsz,(L) = w,™ wherew, = g2"(=*1

So, we compute the

(r+1)(r,+1) determinants detG(z( 1) z(1))
where



detG(z(1) (1)) = def A( Z( 1) Z( 1)O

L
+o+A(z(D).2(0)0 B (7 ), 2 1)
(17)

or simplydetG(1, J,)

(Al(e—jzﬂll(qﬂ) gl 21,/ 2+])) 0

Bl'r(e—jZﬂﬂ(rl"'l) ’ e_j 21,/ ¢ 2+]))+“.+

detG(l, },) = de

+A](e—jzn1/(r1+1),éjzrtzl(rzﬂ))m 3( gt g Aty 1))

(18)

If one takes into account

detG(s ,s) = Zl z Q.. 05 § whereg, , are

k, =0k, =

real coefficients, therg, , can be evaluated
using the double inverse FFT as follows

O = gty zdetG(I 1) Gk
ontlntls s
k,=01,...r,k,=01,...1r, (19)

or equivalently

1 1 P

= - detG(1 @jzmllll(r1+l)é 21k J I+
gk1vk2 r1+1 r2+1|120|22=0 € (1 J2)

k=01..r,k,=01,..1,

(20)

B(41).41)

that

So in (16), the denominator polynomial has been
completely determined.

In order to evaluate the numerator matrix
polynomial one has to compute the numerical

it at the (r'+1)(r, +1) points,

r=(n+n)(vu-1) and r=(m+m)(vu-1)
also equispaced on the unit bidisanitarly, we

value of

w" where w, = g%

define z(l)= and
,=0,..
w, = &2 andl, =0,...r,".
the  (r'+1)(r, +1)

adic(z( 1), z( 1)) where

.r,' and the pointsz,(l)=w," where
So, we compute

adjoint matrices

D)= ad A4 ). 2 D)o B(£) 4+
(L))o 8 (2.4 D)

adjc(z( 1),z

+A(z <u>
(21)

or simplyadjG(},1,)

adiG(1,1,) = adj A g2t/ g 2tieid) g

BlT(e—jzmlf(rl'ﬂ) gt 2'+J>)+___+

+A](e-12ﬂ1/(r1'+33 RS *’))D 3( 2040+ éatz¢2+i))

(22)
If one takes into account that
adjG(s, s) = Z z G, 0% s whereG_, are

k, =0k, =0

numerical (non polynomial) matrices, th€p



can be evaluated using the double inverse FFT as

follows non
" adjG(s, s) = Z z G, 08 5. Furthermore,

by using (16)x is evaluated.

1 1 &2
G ==B—=>> adjG(L,1,) wvahwie,

o tls s
k,=01...r",k,=01,..," (23)

3. Example
or equivalently We consider Equation (1) withn=2 and
s+1  ¢-1
1 1 d ) [@i2rtah (10 g 23/ 5+ H=n=2, Al:{s §+3+1} ’
——[—I qly /At [t
ST, +1 Olzoa il L)@

[s-1 s _[s+1 s]

k1:0111"'1r1l1k2:011!"'rzl Bl_ 2 38+2, B 2 O ,

(24) ]

| s - |1 2s+5
Thus, we computedjG(s, s) anddetd s, s) 27| q41  sro| 2 C7(, s|

from the refations  Then, following the procedure described in
detG(s )= Z z Q. 0% 5 and  gection I1, we find the solutiorX :[2 );j
k, =0k, =
where
2 3 4 5 6 7 8 9

X1=(-18-211s-739s -1002s -371s + 254s +237s +116s +36s +3s )/

2 3 4 5 6 7 8 9 10
(14+97s+279s +523s +831s +923s + 396s -214s -238s -48s -3s ),

2 3 4 5 6 7 8 9
Xp=(-2+s-40s -310s -613s -372s +116s +178s +44s +3s )/

2 3 4 5 6 7 8 9 10
(-14-97s-279s -523s -831s -923s -396s +214s +238s +48s +3s ),



2 3 4 5 6 7 8
X3=(54+293s+586s +605s +331s +76s +30s +28s +3s )/

2 3 4 5 6 7 8 9 10
(-14-97s-279s -523s -831s -923s -396s +214s +238s +48s +3s ),

and

2 3 4 5 6 7 8
X4= (-22-80s-54s +20s +9s +32s +66s +25s +2s )/

2 3 4 5 6 7 8 9 10
(14+97s+279s +523s +831s +923s +396s -214s -238s -48s -3s ),

V. CONCLUSION
A new fast algorithm for one-variable and two-
variable Lyapunov's Equation is proposed. The
algorithm is based on the DFFT (Discrete Fast
Fourier Transform). The simplicity and
efficiency of the method are illustrated by a
numerical example
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