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Abstract:- In this paper, a fast algorithm for the solution of one-variable and two-variable Lyapunov's
Equation is presented. The algorithm is based on the use of the FFT (Fast Fourier Transform). The
simplicity and efficiency of the method are illustrated by a numerical example.
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1. Introduction A s s XB s s  A s s XB s s  C s sn n1 1 2  1 1 2  1 2  1 2  1 2, , , , ,. . .b g b g b g b g b g+ +  =
. It is not diff icult, based on the solution of the
simple Lyapunov

Equation: A XB  A XB  Cn n1 1+ +  =. . . , to formulate
algorithms for the solution of one- and two-
variable Lyapunov Equation via FFT.

     Fast Fourier Transform (FFT), [1], has been
applied in many problems in systems theory in
order to facili tate or at least to speed up the
relevant algebraic manipulation.
   In [2], the FFT is used in order to determine

the characteristic polynomial of a rectangular
matrix and in [3] the same technique is used for
the calculation of a Determinant Polynomial.
The extension of this technique in 2-D systems is
given in [4]. The use of FFT for arbitrary
transformations of one-variable polynomials and
rational functions is known [5].

    In Section II , the algorithm is stated for the
one-variable Lyapunov Equation whereas in
Section III, the algorithm is described in the case
of the two-variable Lyapunov Equation. Finally
one can find some concluding remarks.

   In this paper, we consider the one-variable
Lyapunov

Equation: A s XB s  A s XB s C sn n1 1b g b g  b g b g b g+ +  =. . .  as
well as the two-variable Lyapunov
Equation:

2. Solution of The One-Variable
Lyapunov Equation

The Equation in question is:
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In particular, we define the points z l w lb g = −

where w ej r= +2 1π / b g  and l r= 0,...,  . So, we

compute the r +1 determinants det G z lb gc h
where

 A s XB s A s XB s C sn n1 1b g b g b g b g b g+ + =. . .        (1)

where A An1,...,  are µ µ×  matrices, B Bn1,...,  are

ν ν×  matrices, X  and C sb g are µ ν×  matrices.

We also suppose that the various elements of Ai

and  B i ni , ,...,  = 1  are polynomials of n1 and n2

degree correspondingly. The objective here is to
determine the unknown matrix X . To this end,
we transform (1) to the equivalent equation

det det ...G z l A z l B z l A z l B z lT
n n

Tb gc h b gc h b gc h b gc h b gc hd i= ⊗ + + ⊗1 1

                       (5)

or simply det G lb g
det det .../ / / /G l A e B e A e B ej l r T j l r

n
j l r

n
T j l rb g d i d i d i d ie jb g b g b g b g= ⊗ + + ⊗− + − + − + − +

1
2 1

1
2 1 2 1 2 1π π π π

     (6)
G s x cb g = sb g                           (2)

where G s A s B s A s B sT
n n

Tb g b g b g b g b g= ⊗ + + ⊗1 1 ... ,

x is the associate vector to the matrix X  (that is

that x x x x x x x
T

= 11 1 21 2 1... ... ... ...ν ν µ µνd i  where xij

is the i,j element of the matrix X ) as well as

c sb g  is the associate vector to the matrix C sb g .
Also, ⊗  denotes the Kronecker (or as also
called direct) product of two matrices as well as

T  denotes the matrix transpose. Since G sb g is a

µν µν,b g  rectangular matrix, then x is given by

If one takes into account that

det G s g sk
k

k

r

b g = ⋅
=

∑
0

 where gk  are real

coefficients,  then gk  can be evaluated using the
inverse FFT as follows

g
r

G l wk
l

r
kl=

+
⋅

=
∑1

1 0

det b g    ,         k r= 0 1, ,...,

(7)
or equivalently

x G s c= −1b g sb g                      (3)
g

r
G l ek

l

r
j kl r=

+
⋅

=

+∑1

1 0

2 1det /b g b gπ
   ,      k r= 0 1, ,...,

(8)
or

x
adjG s c s

G s
=

⋅b g b g
b gdet

                (4)

So in (4), the denominator polynomial has been
completely determined.

In order to evaluate the numerator matrix
polynomial one has to compute the numerical
value of it at the  r' +1 points,

r n n' = + −1 2 1b gb gνµ   also equally spaced on the
unit disc. Similarly, we define the points

z l w lb g = −  where w ej r= +2 1π / 'b g and l r= 0,..., '
.So, we also compute the r' +1 adjoint matrices

adjG z lb gc h  where

The computation of x=x sb g   could be achieved
via FFT as follows.

First one has to compute det G sb g. To this end,
we compute it numerically at r +1 points where

r n n= +1 2b gνµ   equally spaced on the unit disc.
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and  B i ni , ,...,  = 1  are polynomials of n m1 1,  and

n m2 2,  degree in s s1 2,  correspondingly. In order
to determine the unknown matrix X , we
transform (13) to the equivalent equation

adjG z l adj A z l B z l A z l B z lT
n n

Tb gc h b gc h b gc h b gc h b gc hd i= ⊗ + + ⊗1 1 ...

                       (9)

or simply adjG lb g

G s s x c1 2,b g = s s1 2,b g           (14)

adjG l adj A e B e A e B ej l r T j l r
n

j l r
n
T j l rb g d i d i d i d ie jb g b g b g b g= ⊗ + + ⊗− + − + − + − +

1
2 1

1
2 1 2 1 2 1π π π π/ / / /...

  (10)

where

G s s A s s B s s A s s B s sT
n n

T
1 2 1 1 2 1 1 2 1 2 1 2, , , ... , ,b g b g b g b g b g= ⊗ + + ⊗

, x is the associate vector to the matrix X  and c
is the associate vector to the matrix C. x is also
given byTaking into account that adjG s G sk

k

k

r

b g = ⋅
=

∑
0

'

where Gk  are numerical (non polynomial)

matrices,  then Gk  can be evaluated using the
inverse FFT as follows

x G s s c= −1
1 2,b g s s1 2,b g               (15)

or

x
adjG s s c s s

G s s
=

⋅1 2 1 2

1 2

, ,

det ,

b g b g
b g

            (16)G
r

adjG l wk
l

r
kl=

+
⋅

=
∑1

1 0'

'

b g    ,     k r= 0 1, ,..., '

(11)
or equivalently

The computation of x=x s s1 2,b g could be
achieved via FFT as follows.

G
r

adjG l ek
l

r
j kl r=

+
⋅

=

+∑1

1 0

2 1

'

'
/b g b gπ

   ,

k r= 0 1, ,..., '                                  (12) First one has to compute det ,G s s1 2b g . To this

end, we compute it numerically at r r1 21 1+ +b gb g

points, where r n n1 1 2= +b gνµ and

r m m2 1 2= +b gνµ , equally spaced on the unit
bidisc. In particular, we define the points

z l w l
1 1 1

1b g = −  where w ej r
1

2 11= +π / b g and l r1 10= ,...,

and the points  z l w l
2 2 2

2b g = −  where w ej r
2

2 12= +π / b g

and l r2 20= ,...,   . So, we compute the

r r1 21 1+ +b gb g determinants det ,G z l z l1 1 2 2b g b gc h
where

3. Solution of the Two-Variable
Lyapunov Equation

Consider now the equation

A s s XB s s A s s XB s s C s sn n1 1 2 1 1 2 1 2 1 2 1 2, , , , ,. . .b g b g b g b g b g+ + =
                     (13)

where A An1,...,  are µ µ×  matrices, B Bn1,...,  are

ν ν×  matrices, X  and C sb g are µ ν×  matrices.

We also suppose that the various elements of Ai
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det , det , ,

... , ,

G z l z l A z l z l B z l z l

A z l z l B z l z l

T

n n
T

1 1 2 2 1 1 1 2 2 1 1 1 2 2

1 1 2 2 1 1 2 2

b g b gc h b g b gc h b g b gc hd

b g b gc h b g b gc hi

= ⊗

+ + ⊗

             (17)

So in (16), the denominator polynomial has been
completely determined.

     In order to evaluate the numerator matrix
polynomial one has to compute the numerical

value of it at the  r r1 21 1' '+ +b gb g points,

r n n1 1 2 1' = + −b gb gνµ  and r m m1 1 2 1' = + −b gb gνµ
also equispaced on the unit bidisc. Similarly, we

define z l w l
1 1 1

1b g = −  where w ej r
1

2 11= +π / 'b g  and

l r1 10= ,..., '  and the points  z l w l
2 2 2

2b g = −  where

w ej r
2

2 12= +π / 'b g and l r2 20= ,..., '.  So, we compute

the r r1 21 1' '+ +b gb g adjoint matrices

adjG z l z l1 1 2 2b g b gc h,   where

or simply det ,G l l1 2b g

det , det ,

, ...

/ /

/ /

G l l A e e

B e e

j l r j l r

T j l r j l r

1 2 1
2 1 2 1

1
2 1 2 1

1 1 2 2

1 1 2 2

b g e je

e j

b g b g

b g b g

= ⊗

+ +

− + − +

− + − +

π π

π π

+ ⊗− + − + − + − +A e e B e en
j l r j l r

n
T j l r j l r2 1 2 1 2 1 2 11 1 2 2 1 1 2 2π π π π/ / / /, ,b g b g b g b ge j e jj

adjG z l z l adj A z l z l B z l z l

A z l z l B z l z l

T

n n
T

1 1 2 2 1 1 1 2 2 1 1 1 2 2

1 1 2 2 1 1 2 2

b g b gc h b g b gc h b g b gc hd

b g b gc h b g b gc hi

, , ,

... , ,

= ⊗ +

+ ⊗

             (21)

                                                (18)

If one takes into account that

det , ,G s s g s sk k
k k

k

r

k

r

1 2 1 2
00

1 2

1 2

2

2

1

1

b g = ⋅
==

∑∑  where gk k1 2,  are

real coefficients,  then gk k1 2,  can be evaluated

using the double inverse FFT as follows

or simply adjG l l1 2,b g

adjG l l adj A e e

B e e

j l r j l r

T j l r j l r

1 2 1
2 1 2 1

1
2 1 2 1

1 1 2 2

1 1 2 2

, ,

, ...

/ ' / '

/ ' / '

b g e je

e j

b g b g

b g b g

= ⊗

+ +

− + − +

− + − +

π π

π πg
r r

G l l w wk k
l

r
k l k l

l

r

1 2

2

2

1 1 2 2

1

11

1

1

11 2
1 2

00
, det ,=

+
⋅

+
⋅

==
∑∑ b g    ,

k r k r1 1 2 20 1 0 1=   =, ,..., , , ,...,    (19)
+ ⊗− + − + − + − +A e e B e en

j l r j l r
n
T j l r j l r2 1 2 1 2 1 2 11 1 2 2 1 1 2 2π π π π/ ' / ' / ' / ', ,b g b g b g b ge j e jj

                                                (22)or equivalently

g
r r

G l l e ek k
l

r
j k l r j k l r

l

r

1 2

2

2

1 1 1 2 2 2

1

11
1

1
11 2

1 2
0

2 1 2 1

0
,

/ /det ,=
+

⋅
+

⋅
=

+ +

=
∑∑ b g b g b gπ π

 ,k r k r1 1 2 20 1 0 1=   =, ,..., , , ,...,

If one takes into account that

adjG s s G s sk k
k k

k

r

k

r

1 2 1 2
00

1 2

1 2

2

2

1

1

, ,

''

b g = ⋅
==

∑∑  where Gk k1 2,  are

numerical (non polynomial) matrices,  then Gk k1 2,

(20)
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can be evaluated using the double inverse FFT as
follows

adjG s s G s sk k
k k

k

r

k

r

1 2 1 2
00

1 2

1 2

2

2

1

1

, ,b g = ⋅
==

∑∑ . Furthermore,

by using (16), x is evaluated.

G
r r

adjG l l w wk k
l

r
k l k l

l

r

1 2

2

2

1 1 2 2

1

11

1

1

11 2
1 2

00
,

''

' '
,=

+
⋅

+
⋅

==
∑∑ b g ,

k r k r1 1 2 20 1 0 1=   =, ,..., ' , , ,..., '      (23)

3. Example
We consider Equation (1) with n=2 and

µ = =n 2, A
s s

s s
1

2

2

1 1

3 1
=

+         −
         + +

L

N
M

O

Q
P  ,

B
s s

s1

1

2 3 2
=

−           
         +

L

N
M

O

Q
P , A

s s
2

1

2 0
=

+           
               

L

N
M

O

Q
P ,

B
s

s s2

1

1 2
=

              −
 +         +

L

N
M

O

Q
P  and C

s

s
=

         +
                

L

N
M

O

Q
P

1 2 5

1
,

Then, following the procedure described in

Section II, we find the solution  X
x x

x x
=

       
       

L

N
M

O

Q
P

1 2

3 4

or equivalently

G
r r

adjG l l e ek k
l

r
j k l r j k l r

l

r

1 2

2

2

1 1 1 2 2 2

1

11
1

1
11 2

1 2
0

2 1 2 1

0
,

'
/ /

'

' '
,=

+
⋅

+
⋅

=

+ +

=
∑∑ b g b g b gπ π

k r k r1 1 2 20 1 0 1=   =, ,..., ' , , ,..., '
(24)

Thus, we compute adjG s s1 2,b g and detG s s1 2,b g
from the relations

det , ,G s s g s sk k
k k

k

r

k

r

1 2 1 2
00

1 2

1 2

2

2

1

1

b g = ⋅
==

∑∑  and

________________________________

where

                                      2             3         4              5           6            7          8       9
x1 =(-18 - 211 s - 739 s  - 1002 s  - 371 s  +   254 s  + 237 s  + 116 s  + 36 s  + 3 s    ) /

                                 2           3            4            5           6          7            8         9     10
    (14 + 97 s + 279 s  + 523 s  + 831 s  + 923 s  +  396 s  - 214 s  - 238 s  - 48 s  - 3 s    ),

                            2           3          4          5            6           7          8       9
x2 = (-2 + s - 40 s  - 310 s  - 613 s  - 372 s  + 116 s  + 178 s  + 44 s  + 3 s   ) /

                                2          3          4           5          6           7            8         9      10
    (-14 - 97 s - 279 s  - 523 s  - 831 s  - 923 s  -396 s  + 214 s  + 238 s  + 48 s  + 3 s   ),
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                                      2           3           4          5         6          7        8
x3 = (54 + 293 s + 586 s  + 605 s  + 331 s  + 76 s  + 30 s  + 28 s  + 3 s  ) /

                                2          3          4           5          6           7            8         9      10
    (-14 - 97 s - 279 s  - 523 s  - 831 s  - 923 s  -396 s  + 214 s  + 238 s  + 48 s  + 3 s   ),

and

                                  2          3        4          5         6          7       8
x4 =  (-22 - 80 s - 54 s  + 20 s  + 9 s  + 32 s  + 66 s  + 25 s  + 2 s  ) /

                                2           3           4            5            6           7          8          9      10
    (14 + 97 s + 279 s  + 523 s  + 831 s  + 923 s  + 396 s  - 214 s  - 238 s  - 48 s  - 3 s    ),

IV. CONCLUSION
A new fast algorithm for one-variable and two-
variable Lyapunov's Equation is proposed. The
algorithm is based on the DFFT (Discrete Fast
Fourier Transform). The simplicity and
efficiency of the method are illustrated by a
numerical example
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