
Common Security Attacks on a TCP/IP Environment

S. A. Paschos
Department of Computer Science

University of Ioannina
Greece

F. N. Afrati
Department of Electrical and Computer Engineering

National Technical University of Athens
Greece

Abstract

The TCP/IP protocol suite are the most widely used communication protocols. Although
their implementation begun at late 1960s, the tradeoffs between security and performance are
not yet well understood. It is evident from the known severe attacks that has undergone, that
encryption might be necessary on special messages (DNS messages, routing tables exchange)
or in the IP level. In this paper, we focus on the attacks that become feasible because of the
nature of the TCP/IP protocols. There is not yet a consent in the Internet community on
how to make TCP/IP more secure without a major downrating on its performance. Finally
we investigate, in detail, a recent attack, namely, IP spoofing, which takes advantage of the
finer mechanisms of TCP/IP.

1 Introduction

These days, more and more computers—personal and workstations—get connected via the In-
ternet. Since the Internet was born to fulfill the need of scientists to share information and
resources, at the beginning it did not take into severe consideration any security issues. But its
explosive growth during the last decade, left back the years of innocence.

Today, the use of Internet has changed. Although the new area of electronic commerce
demands more and more secure transactions, there are still many problems in the lower layers
that require special care ([Bellovin, 1996]). A secure exchange of information needs not only
secure peers but also a secure communication channel.

In this paper we focus on the security issues raised by the nature and the implementation of
the current version of TCP/IP protocols. In the next section, we describe briefly the TCP/IP
protocol suite, for self-containment reasons. In section 3, we refer to the common security attacks
known to be related to the TCP/IP functions; we point out that active attacks are the ones which
need good knowledge of the TCP/IP finer structure. In section 4, we investigate, in detail, a
recent active attack known as IP spoofing. This is the situation where a packet is transmitting
in an IP network containing in its IP header an address other than that of the sending host.

1



We will describe how this attack can be successful and point out to weaknesses of the TCP/IP
protocols that enable this attack.

2 TCP/IP in brief

In this section we give a brief presentation of the TCP/IP protocol suite, in order to help the
reader understand the issues presented and discussed in this paper. More complete information
can be found in [Stevens, 1994, Comer, 1995].

The aim of the TCP/IP protocol suite is to allow computers of different hardware, running
different operating systems to communicate with each other. Networking protocols are developed
in layers, with each layer responsible for a different facet of the communication. The TCP/IP
protocol suite is a combination of different protocols at various layers. TCP/IP is considered a
4-layer system (figure 1).

Network

(ARP/RARP, Network interface)

(IP, ICMP, IGMP)

Link

Transport

(TCP, UDP)

Application

(Telnet, FTP, e-mail)

Figure 1: TCP/IP protocol suite

• The link layer, also called host-to-network or network interface layer. It includes the device
driver in the operating system and, the network interface card (NIC) in the computer; it
handles the details of the physical interfacing via the transmission medium.

• The network layer deals with the movement of packets around the network. For example,
IP (Internet Protocol) [Postel, 1981a] deals with packet routing. IP provides an unreliable
connectionless service known as datagram delivery service. The word unreliable implies
that IP does not guarantee that a datagram arrives successfully to its destination, i.e.,
IP provides a best effort service. When a network failure occurs, IP discard the data-
gram and try to notify the source by sending an ICMP (Internet Control Message Proto-
col) [Postel, 1981b] error message. IP also specifies a uniform addressing scheme known as
IP addresses, or Internet addresses. Every NIC on a TCP/IP network must have a unique
IP address. The word connectionless implies that IP does not maintain state information
about successive datagrams. That practically means that datagrams can get delivered out
of order.

2



• The transport layer provides an end-to-end data flow. Two protocols—with significant
differences—provide transport services in the TCP/IP protocol suite: TCP (Transmission
Control Protocol) [Postel, 1981c] and UDP (User Datagram Protocol) [Postel, 1980].

TCP is a very elegant protocol which, although it relies on the unreliable delivery service
of IP, provides a reliable, connection-oriented, byte stream service to the application layer.
TCP provides reliability by using a retransmission mechanism in order to get the chunks of
data that lost by a hardware failure or discarded by IP. This mechanism relies on a positive
acknowledging scheme, i.e., TCP acknowledges every portion of data that receives. The
lost of data is detected by the expiration of a proper counter that TCP maintains. TCP
also maintains a checksum on its control information (header) and data, which guarantees
the integrity of the transmitting information. Since the IP datagrams sometimes arrive out
of order, TCP provides a re-sequencing mechanism in order to pass the received data in
the correct order to the application. The term connection-oriented denotes that TCP must
establish a connection between the two peer computers before they can exchange data.

UDP provides a primitive datagram-oriented transport service. It does not use acknowl-
edgments, neither examines the integrity of data. Applications that use the services of
UDP to transfer the data, must provide the proper reliability by their own.

• The application layer handles the details of the particular application. Most networking
applications are written as two distinct programs, the client and the server.

3 Common Attacks

The attacks are usually divided into two categories:

• The passive attacks, where the attacker does not interact with the victim system, but
rather collects information about it. For example, he/she monitors its transmissions trying
to collect usernames and passwords.

• The active attacks, where the attacker interacts with the victim system either by modifying
the data streams the system receives, or by submitting false data streams.

The final goal of an attack is, for the attacker to gain access to a system as an ordinary or a
privileged user (superuser).

3.1 Passive attacks

The most used method for a passive attack is sniffing. In this case, the NIC captures data not
addressed to the machine in which it resides; the NIC is then in promiscuous mode. This method
is easily implemented if a lot of computers share the same communication channel (e.g. Ethernet).

Briefly, the intruder must take some actions in order to perform this task:

1. Gain access to a computer (even as a regular user), and then, monitor the traffic. This
can be accomplished by guessing pairs of usernames and passwords. This technique is
thoroughly examined (e.g. [Klein]) in the past years.

3



2. Become superuser. This can be achieved by exploiting either the security holes of the
Operating System, or a weak security policy (e.g., easy to predict superuser password).

3. Execute a packet sniffer. At that stage, since in a normal networking environment the
critical information (usernames and passwords) are transmitted in clear text, the intruder
can also compromise all the machines on the local network.

We shall not focus on passive attacks here; they do not primarily make use of the deficiencies
of the networking protocols they are rather well studied in the past ([Farmer and Vanema, 1993,
de Vivo et al., 1998]) and we already know of well behaving techniques to prevent them.

3.2 Active attacks

Although a possible active attack was already described in [Morris, 1985], the first well known
attack that actually took place in the Internet was the notorious Internet worm [Spafford, 1988,
Spafford, 1991]. Moreover, the Internet worm did not use the particular weakness of TCP/IP
protocols pointed out by Morris.

The Internet worm was a program which, whenever detected, was executed on one or more
machines in the Internet. The worm collected host and user information and then used that
information to establish network connections and break into other machines, using flaws present
in those machines’ software (mainly the sendmail mail agent). After breaking in, the program
would replicate itself and the replica would try to infect other systems in the same way. Although
it seems that the weakness of the utilities which the worm exploited in order to perform its task
have been corrected, the worm incident revealed an attack method and we do not know whether
this method would not apply to newer versions of these or other system utilities.

Another attack method is presented in detail in [Bellovin, 1992] and [Cheswick, 1992]; this
one is interactive (i.e., the cracker tries to break-in by giving commands in real time) as compared
to the Internet worm; measures taken to prevent the cracker’s success, are also presented. The
defence against the cracker in [Bellovin, 1992] was (i) the use of extended logging of cracker’s
activity, and (ii) some software (packet sucker) which used counterintelligence strategies trying
to find out the source of the attack. On the other hand, in [Cheswick, 1992] the method was to
use a dedicated sacrificial machine in order to fool the cracker by giving him the impression that
he gained access in his target.

In the rest of this text we will focus on a special active attack named IP spoofing. We will
describe how this attack can be successful and point out to weaknesses of the TCP/IP protocol
that enable this attack.

4 IP spoofing

IP spoofing is the situation where a packet is transmitting in an IP network containing in its
IP header an address other than that of the sending host. IP spoofing try to make use of the
concept of trusted host.

When a host trust another host, any user who has the same username on both machines can
execute the r-commands (rsh, rlogin, rcp) from the trusted host to the trusting one, without
giving a password. The above concept is realized in unix both by a global file (hosts.equiv)

4



and by files which reside in the home directory of a user (.rhosts). The second file can be a
severe security hole, since any user on a machine can create in his home directory such a file,
giving permissions to anybody he wants to connect to the specific machine without giving any
credentials.1

IP spoofing is a severe attack which in general is the first step for a number of other attacks.
Under IP spoofing attack, the attacking host masquerades as a trusted host, giving thus the
attacker the possibility to execute remote commands on a machine. Moreover it makes almost
impossible to track the real source of the attack. The false address used by the attacking host
may be unassigned or may belong to another host. In the latter case, the attacker must perform
some additional actions, which we will present in the following.

If a spoofing attack is originating within a network, it is difficult to protect the other hosts
of the same physical network. In this situation only good security policies (e.g., deactivation
of r-commands) can prevent the success of this attack. When the attack comes from another
network the activation of packet filter rules on the border router can prevent the attack, by
paying probably a performance penalty.

In order to describe in detail the IP spoofing attack, we need to recall some features of the
finer structure of the TCP protocol.

The establishment of a TCP connection requires the following steps:

1. The source machine (also called client) send to the destination machine (also called server)
a packet without data, and:

• fills the appropriate field in TCP header (fig. 2) with a 32-bit number called initial
sequence number (ISN); this number is the starting point after which every byte sent
across this connection will be numbered. Thus the first byte of data will have sequence
number ISN + 1

• turns on the SYN flag

2. The destination machine returns back a packet, also without data containing the following
information in its header:

• the SYN flag is turned on and the server’s initial number is recorded
• the ACK flag is turned on and a 32-bit acknowledge number is set to the client’s ISN

plus one (the serial number of the first byte expected to be received)

3. The client acknowledges the server’s SYN packet by turning on the ACK flag and recording
the server’s ISN plus one to the acknowledge number

This sequence of messages (shown in fig. 3), which is mandatory in order to establish a TCP
connection, is called the three-way handshake.

Other critical fields in the TCP header are the two 16-bit fields namely source port number
and destination port number. The 4-tuple consisting of the source port number, source IP
address, destination port number and destination IP address,2 specify the two end points, that
uniquely identify each TCP connection.

1The special pattern + + in the .rhosts file means that everyone from everywhere can connect to that account
without giving the proper password.

2Both source and destination IP addresses are located in the IP header

5



data

0 16 314 10 24

U

R

G

A

C

K

P

S

H

R

S

T

S

Y

N

F

N

I

urgent pointer

padding

hlen

source port destination port

sequence number

acknowledgement number

code bits window

checksum

reserved

options (if any)

Figure 2: The TCP segment

Now, we can go in detail into the description of the IP spoofing attack: In order a host to
masquerade as an existing host (victim), it must somehow interfere to the three-way handshake.
A technique to achieve that, was presented by R. Morris in [Morris, 1985], but it received little
attention. The procedure consists of two steps: first, the intruder must predict the server’s ISN
and second, he must prevent the communication between the server and the client (thus, it will
be easy for the intruder to masquerade his machine as a legitimate client).

4.1 ISN prediction

This step was first presented in [Morris, 1985] and generalized in [Bellovin, 1989]. The applica-
tion of this step achieved an actual break-in in 1995, which led to the arrest and imprisonment
of Kevin Mitnick.

Supposing for a moment that there is a way for an intruder to predict the server’s ISN. This
lead to the following scenario:

1. The intruder sends a SYN message and its ISN number to the server, pretending it is a
legitimate client (performing IP spoofing).

6



SYN M

SYN N, ACK M+1

ACK N+1

Host 2Host 1

Figure 3: The establishment of a TCP connection

2. The server responds by acknowledging intruder’s SYN and ISN, sending in addition a SYN
and its ISN to the IP address extracted by the previous message, i.e., to the client, not the
intruder.

3. Although the intruder probably does not receive the previous message (if he is not on the
same transmission medium, he cannot use a sniffer), having predicted the server’s ISN,
sends an acknowledgment, performing, thus, the third step of the three-way handshake.

After these three steps, the server establishes the connection and the intruder may execute some
malicious instructions.

The prediction of server’s ISN that we supposed above can be achieved either by sniffing
the traffic, or by calculating the number, presuming that the routine used for this calculation
by the specific Operating System is known. The last statement is considered, because not all
the implementations follow the TCP specification. Bellovin showed that the formal specification
of TCP does not prevent the prediction. For this reason he suggested either to randomize the
increment (taking of course into account the size in bits of the ISN), or to use a cryptographic
algorithm for ISN generation.

The weak link in the scenario above, is the second step. As Morris pointed out, when the
client receives the server’s ACK, it finds out that the ISN which the server acknowledges is not
valid, so it sends a reset packet trying to reset the connection. If the server will receive this reset
message it will close the connection initiated by the intruder. That’s why the communication
between the client and the server must be prevented.

7



4.2 Prevention of the communication between client and server

This step can be performed by leading the client to a situation known as denial of service. The
most known ways to achieve that, are SYN flooding and “smurf”/“fraggle” attacks:

4.2.1 SYN flooding

Before the intruder perform the scenario presented in page 7, attacks the client as follows: It
sends SYN messages requesting connection to that port of the client which it will use later to
contact the server. Before a SYN flooding attack be observed, the kernel kept a buffer of limited
size where it put the incoming connections. The client, when it receives the connection request
from the intruder (first message of the three-way handshake), performs the ACK and SYN
(second message). The intruder stays silent and does not send to the third message in order to
accomplish the initiation of connection. The problem is that in the original TCP implementation
the host that accepts the first message (in this case the client) does not use a timeout, so it waits
for ever to establish the connection. The intruder can use this feature by sending as many
connection requests to overfull the buffer. Now the client cannot accept any message destined
to that port, so the message sent by the server during the second step of the spoofing scenario
is discarded, and no reset message is initiated. The client is completely deaf in this port.

After a large scale attack using the SYN flooding mechanism, many vendors patched their
code to avoid this attack.

4.2.2 The “smurf” and “fraggle” attacks

The “smurf” attack is a recent one and is named after its exploit program. The intruder sends
a number of ICMP [Postel, 1981b] echo requests (i.e., it uses the same method used py the
ping program), filling the source address field of these packets by the IP address of client (thus
performing IP spoofing). In addition, it address these requests to a broadcast address, which
means that every host on the same physical network will reply by sending back the packet. If
the number of hosts connected on the same subnet is large enough, this technique can generate
a storm of packets, thus consuming a lot of resources of the spoofed host (client).

The “fraggle” attack is similar to the “smurf”; the difference is that it uses UDP echo packets
instead of ICMP echo packets.

In [Huegen, 1998] the enormous amount of traffic generated after a “smurf” attack is calcu-
lated for a network consisting of 100 hosts.

5 Conclusions

We considered here problems on a category of security attacks in a TCP/IP environment. It is
evident that relying on the sender’s IP address for authentication, does not prevent some serious
dangers. Although many of these attacks will be impossible under the forthcoming IPv6, until
then, there is a real need of a secure transport protocol, permitting signed or encrypted data.

Until then, we can apply good security policies, filter the incoming and outgoing traffic and,
if all these fail, analyse the attack we have experienced.

8



References

[Bellovin, 1989] S. M. Bellovin. Security problems in the TCP/IP protocol suite. Computer
Communication Review, 19(2):32–48, April 1989.

[Bellovin, 1992] Steven M. Bellovin. There be dragons. In Proc. UNIX Security Symposium III,
pages 1–16, 1992.

[Bellovin, 1996] Steven M. Bellovin. Problem areas for the IP security protocols. In Proc. of the
Sixth Usenix UNIX Security Symposium, 1996.

[Cheswick, 1992] Bill Cheswick. An evening with Berferd, in which a cracker is lured, endured,
and studied. In Proc. Winter USENIX Conference, 1992.

[Comer, 1995] Douglas E. Comer. Internetworking With TCP/IP. Principles, Protocols, and
Architecture, volume 1. Prentice Hall, Englewood Cliffs, New Jersey, third edition, 1995.

[de Vivo et al., 1998] Marco de Vivo, Gabriela O. de Vivo, and Germinal Isern. Internet security
attacks at the basic level. Operating Systems Reviews, pages 4–15, April 1998.

[Farmer and Vanema, 1993] Dan Farmer and Wietse Vanema. Improving the security of your
site by breaking into it. Posted to USENET, 1993.

[Huegen, 1998] Graig A. Huegen. The latest in denial of service attacks: “smurfing” description
and information to minimize effects. http://www.quadrunner.com/~c-huegen/smurf.cgi,
December 1998.

[Klein] Daniel V. Klein. “Foiling the Cracker”: A survey of, and improvements to, password
security.

[Morris, 1985] Robert T. Morris. A weakness in the 4.2BSD Unix TCP/IP software. Computing
Science Technical Report 117, AT&T Bell Laboratories, 1985.

[Postel, 1980] J. Postel. RFC 768: User datagram protocol, August 1980.

[Postel, 1981a] J. Postel. RFC 791: Internet Protocol, September 1981.

[Postel, 1981b] J. Postel. RFC 792: Internet Control Message Protocol, September 1981.

[Postel, 1981c] J. Postel. RFC 793: Transmission control protocol, September 1981.

[Spafford, 1988] Eugene H. Spafford. The Internet worm program: An analysis. Technical
Report CSD-TR-823, Department of Computer Sciences, Purdue University, 1988.

[Spafford, 1991] Eugene H. Spafford. The Internet worm incident. Technical Report CSD-TR-
933, Department of Computer Sciences, Purdue University, 1991.

[Stevens, 1994] W. Richard Stevens. TCP/IP Illustrated. Vol 1: The Protocols. Addison-Wesley,
1994.

9


