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Abstract:- A direct investigation of the electromagnetic wave propagation in a stratified anisotropic
medium, for which the parameters in the partial differential equations are piece-wise continuous
functions of only one spatial variable, is presented. The formulation introduses a matrix describing
the wave propagation. This approach enables us to decompose the wave field into up-going and
down-going waves by implementing an eigenvector decomposition, much more simplified in
comparison with the general case.

The matrix formulation method is used to calculate the electromagnetic response. Expanding
properly the propagation matrix using Feynman’s ordered exponential operators, we derive the
electromagnetic response of a stratified anisotropic stochastic medium. The evaluation of the
relevant stochastic integrals allows the determination of the stochastic properties of the

clectromagnetic response.
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1 Introduction

The interaction of electromagnetic waves with
stratified media occurs in a wide variety of
applications, from communication and optics
down to the level of electronic components [1-3].
The basic problem refers the propagation of a
plane electromagnetic wave, incident from the
vacuum (or air) to stratified media, generally
anisotropic. Their electrical properties (expressed
by a tensor) vary in a stochastic manner at the
vertical direction, defined by z coordinate axis but
not depend on x or y.

The electromagnetic transmission into layered
stochastic isotropic media has been recently
studied by Valhanatos [4], who employed a 2x2
propagation matrix. Note that this propagation
matrix, for a uniform layer could be explicitly
found in terms of the solution of an algebraic
problem.

The present work generalizes the latter
approach. It introduces a 4x4 matrix appropriate
to describe the electromagnetic wave propagation
in a stratified anisotropic structure. In the frame of
this approach the wavefield is decomposed into
up-going and down-going waves using an

eigenvector decomposition, much more simplified
compared to the general case.

Consequently the matrix formulation method is
used to calculate the electromagnetic response.
The propagation matrix, is properly expanding
using Feynman’s ordered exponential operators,
and the electromagnetic response of a stratified
anisotropic stochastic medium is derived. The
evaluation of the relevant stochastic integrals
results to the determination of the stochastic
properties of the electromagnetic response.

2 The Dominant Equations

For the general approach, a set of Cartesian axes
Oxyz is adopted, with the z-axis pointing
downwards in the vertical direction. The structure
is bounded in depth by a half-space with complex
conductivity:
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The basic Maxwell equations prevailing the
problem are expressed by:
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where o is the angular frequency of the
clectromagnetic  field, u  the magnetic
permeability, which is supposed to be that of the
vacuum i, and ¢ the complex conductivity tensor.
Introducing a vector
¥ =(Ex,Hy,Ey,-Hx)"
(similar of that used by Berreman [5] and
Abramovici [6] the set of equations (1) can be
written in a matrix form
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Introducing both the electric and magnetic field
components in the propagation equation, we have
the advantage expressing the boundary conditions
at the interface, without explicitly involving the
derivatives of the electric field at the surface
itself. The general solution of equation (2) can be
formally expressed using the ordered exponential
opcrator

F(2,0) = EXP( ]A(z)dz) 3)

originally introduced by Feynman [7]. Then ¥(z)
can be written in the form:

¥(z) = F(z,0)¥(0) ),
where F(z,0) is the so-called propagator matrix,
used by Gilbert and Backus [8] in the study of
clastic wave propagation.
In order to calculate the ordered exponential
operator we follow the so-called Magnus
approximation [9]. According to the Magnus
approach: F(z,0)=exp[€2(z,0)] where the exponent
1s an infinite series, the first terms of which are :
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where [A,B]=AB-BA the commutator of the
operators A and B [10]. We point out that
expression (5) is the continuous analog of the
Baker-Hausdorff formula[11,12].

Expression (4) can be used for the
determination of the electromagnetic response. If
the elements of the matrix F(L,0) are known and
by considering that on that on the surface of the
half-space basement with tensor complex
conductivity o, hold

H,(L)=(kp; /op)Ex(L) and

H(L)=-(kna/o)Ey(L)
where k*p=iopop;, a linear system of algebraic
equations is obtained. The solution of thesystem
provides the elements of the electromagnetic
response tensor through the relations:
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where
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and é,‘ =0Ou /kbi .

In the case of a structure which is described by
a complex conductivity of the form o=06(z)I,
where L=(6;) is the 2x2 identity matrix,
overburden a homogeneous isotropic half-space
with complex conductivity o, the aforementioned
expressions simplified to:
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The analysis is proceed to the calculation of
the propagation matrix F in the case of a simple
isotropic layered structure, overlying a half-space
basement with conductivity o,. In cach layer of
thickness h,, , in which A(z), can be considered
constant equation (2) can be exactly solved [13].
‘P(Lm)zexp(Ahm)\I’(Lm-1):Pm(Lm-l ) WP(L) (8)
where,

P.(Lyi,h)=exp(A.h,) and L.=h, +h,+....... hy
.Using the Cayley-Hamilton (CH) thecorem [14]



and expression (5), an analytic expression for the
propagation matrix could be algebricaily
calculated. For the case of isotropic layered
structure, where 6, =c,, I, the propagation matrix
P,, has the form :
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and k%= L.OP 6y . Oy 1s the 2x2 null matrix. The
latter expression can be wused for exact
determination of the electromagnetic response in
the case of a stratified structure. In fact, if h; h,,
.hny, the thicknesses of the n-1 layers,
respectively, overburden of the halfspace, we
obtain :

W(L)=F(L.0)¥(0)=(Pn-1.Pn-2. ... P, )¥(0) (10)
where

L= Ehm

m=1

It is already mentioned that using the afore-
mentioned propagation matrix method, a 4xl
generalized field vector ¥ is defined with a 4x4
propagation matrix F, which describes the
propagation of the generalized electromagnetic
field vector. In a particular frequency of the
electromagnetic field the propagation matrix
depends, as expected, on the subsurface complex
conductivity structure.

An alternative presentation of the propagation
matrix is assessed assuming that the eigenvalues
of the matrix € are distinct. Therefore, applying
the CH theorem, a matrix U 1s introduced. The
columns of U are the eigenvectors of the matrix
Q, that has the property Q=U A U, where A is a
diagonal matrix, with diagonal elements the
cigenvalues A; of €. Thus, the propagation matrix
F can be found, through the eigenvectors and
eigenvalues of Q as:

F=exp(©h) =Uexp(Ah)U" =UKU"  (11)
where K is also a diagonal matrix with elements
K; =6 exp(A; h) determined by the four eigen-
values A; of Q. We define now a new generalized
clectromagnetic field vector ®(z)=U"¥(z). The
new field vector decomposes the wave equation
(2) into four independent equations
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The four independent equations have the
elementary solution of the form :
Oi(z+h)=exp(Ah)Di(z) or equivalently
®(z+h)=K®(z). From the latter expressions it is
obvious that, since the new field ® has been
determined, the generalized electromagnetic field
vector ¥ is given by:
¥(z+h)=U¥(z+h)=UKU'¥(z)
which is a combination of equations (8) and (11).

3 The electromagnetic response of a

stratified stochastic medium

In the case of a stochastic medium the complex
conductivity tensor 6 is supposed to vary
stochastically in space with given statistical
properties (e.g. as a random variable). The
stochastic medium study deals with the statistical
quantities of the medium and the relevant
statistical quantities of the wavefield.

To simplify the algebra we consider the
particular case of a scalar medium conductivity
which depends on the z- coordinate only
(stratified medium).

Furthermore, in the previous section we
showed that if the characteristic propagation
matrix F(z,0) of the medium is known, the
electromagnetic response can be easily obtained.

Thus, we proceed to the theoretical study of
the electromagnetic field in the case of a stratified
stochastic structure, composed of a layer with
thickness L, characterized by a stochastic
variation of its complex conductivity, which
overlies a half space basement having a constant
complex conductivity and the calculation of the
clectromagnetic response at the surface of the
structure.

Let us calculate the propagation matrix F(L,0)
for a layer of thickness L with conductivity
o(z)=o,+tE(z), where o, represents the average
conductivity of the layer and &(z) is a random
uncorrelated  zero-mean function of the z-
coordinate. We attempt to approximate equation
(5). Writing explicitly the first commutators of the
expansion of the ordered exponential (5) we keep
the first two terms. Therefore in the
approximation order (kL)* ie when the



penetration depth of the electromagnetic field is
greater than L, we obtain

F(L,0) = (12)
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Using the CH theorem the clements F; of the
matrix exponential of equation .(12) can be easily
expressed as :

F.,(L,0) = cosh(ik ,La) +
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To demonstrate the calculation of the electro-
magnetic response, we assume  a structure
consisting of a layer with thickness L having
stochastic variation of the complex conductivity
over a half-space with conductivity o In this
configuration the electromagnetic response can be
calculated by using eqs.(7) and (13) as:

Zxy(z=0)=

k, (S, -S;)

cosh(ik Lo)—| —+
a, 2k, La

4

which in the absence of the stochastic perturbation
(i.e &(z)=0) exactly coincides with the well-known
results for a homogeneous layer of thickness L
overlying a half-space with conductivity o, [15].
Note, that keeping higher order corrections in
equation (13) the resulting estimations for
Zxy(z=0) do not present any substantial difference
with the values estimating using equation.(14).

The  propagator —matrix  F(L,0) and
consequently the electromagnetic response can
found when the stochastic integrals S;(L), Sy(L.)
and S;(L) are known. For a given configuration of
the stochastic fluctuation &(z), these integrals can
be exactly estimated by numerical integration.
However, in some particular cases, it is possible to
derive useful information about the statistical
properties of the electromagnetic response of a
structure through an analytical evaluation of the
relevant stochastic integrals. For this purpose we
assume in the following, that the stochastic
perturbation &(z) of the conductivity of the upper
layer has a Gaussian probability distribution with
zero average and ¢’ standard deviation. Using the
basic techniques of Statonovich stochastic
calculus [16,17,18] it is not difficult to
demonstrate that:

S, = [&(z)dz= LY,

L'y, LY,
2 243
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where Y, and Y, are two_independent Gaussian
stochastic variables  with zero average and
standard deviation &>. We emphasize that the latter
equations should be intended in the sense that,
given a series of independent realizations of &(z)
the statistical distribution of the right hand side
and left hand side of the equations are the same.
Substitution of the corresponding terms in
equation (13) allows us to write for the probability
distribution of Zxy(z=0)

S, = Lj.zf(z)dz =
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From the application of a Monte Carlo simulation
in order to estimate the probability distribution of
the module of Zxy(z=0) for different frequencies
and degrees of perturbation (i.c., different £%) [4]
is drawn the conclusion that as the frequency
decreases, the width of the probability distribution
bell 1s shortened and the curve becomes less
rough. This indicates that the influence of the
stochastic complex conductivity term is stronger
as the frequency of the electromagnetic wave
increases. From physical point of view it is
inferred that as the frequency decreases, the
influence of the upper stratified stochastic
structure  is  getting  weaker and the
electromagnetic response is determined mainly
from the field distribution in the underlying
medium.

4 Concluding remarks

In the present paper, we define a 4x4 propagation
matrix. using a generalized electromagnetic field
vector ¥, Using the element of this matrix, the
electromagnetic response tensor for a stratified
anisotropic structure, is calculated. Also an
alternative presentation of the propagation matrix
is given based on a diagonalization of the
characteristic equation. Introducing a new 4xl
field vector, the wave equation is decomposed
into four independent wave equations, having
solutions in an elementary matrix form. An
advantage of the proposed calculation procedure,
from the theoretical point of view, is that uses
only matrix multiplications, instead of a
differential equation system.

Furthermore, using the aforementioned field
vector ¥, the problem of the propagation of
electromagnetic field in a stratified stochastic
medium is studied. It is conducted for a structure
in which an upper layer characterized by

stochastic variance in its complex conductivity
exists. Our approach is based on the expansion to
the approximation order (kL)’, of the
electromagnetic propagation matrix according to
the Magnus technique. In the frame of this
approach it is possible to evaluate the statistical
properties of the electromagnetic response
Zxy(z=0) of our layered configuration. We point
out that, the extension of this method to the
calculation of higher order corrections to the
present results, does not present any substantial
differences.

References

[1] H. Bertoni and L. Felsen, Directions in Electro
magnetic Wave Modeling, Plenum, 1991

[2] R. King, M. Owens and T.T.Wu, Lateral
Electromagnetic Waves, Springer-Verlag,
1992.

[3] M. Born and E. Wolf, Principles of Optics,
Pergamon Press, 1970.

[4] F. Vallianatos , Magnetotelluric response of a
random layered earth, Geophys. J.. Int,
Vol.125, 1996, pp.557-583.

[5] D. Berreman, Optics in stratified and aniso-
tropic media, J. Opt. Soc. Am.,Vol. 62, 1972,
pp.502-510.

[6] F. Abramovici, The forward magnetotelluric
problem for an inhomogeneous and
anisotropic structure, Geophys., Vol. 39,
1974, pp. 56-68..

[7]1 R. Feynman, An operator calculus having
applications in quantum electrodynamics,
Phys. Rev., Vol. 84 No. 1, 1951, pp. 108-128.

[8] F. Gilbert and G. Backus, Propagation
matrices in elastic waves and wvibration
problems, Geophys.,Vol. 31, 1966, pp. 326-
332.



[9] W. Magnus, On the exponential solution of
differential equations for a linear operator,
Commun. Pure Appl. Maths., Vol. 7, 1954,
pp. 649-673.

[10] L. I. Schiff, Quantum Mechanics, McGraw
Hill, 1982.

[11] H. F. Baker, On the integration of linear
differential equations, Proceedings of the
London Mathematical Society,Vol. 2, 1904,
pp. 293-296.

[12] K. O. Fredrchs, Mathematical aspects of the
quantum theory of fields, Part V., Commun.
Pure Appl. Maths.,Vol. 6, 1953, pp. 1-72.

[13] R. Bronson, Modern introductory Differential
Equations, McGraw-Hill, 1973.

[14] P. Kahn, Mathematical methods for scientists
and  engineers. Linear and non-linear
systems, John Wiley, 1990.

[15] J. Wait, Electromagnetic Waves in Stratified
Media, Pergamon Press, 1970.

[16] C. W. Gardiner, Handbook of stochastic
methods, Springer, 1985.

[17] B. Oksendal, Stochastic differential
equations, Springer - Verlang, 1992.

(18] S. K. Srinivasan. and K. M. Merata,
Stochastic processes, McGraw- Hill, 1988.



