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Abstract: - Signal processing techniques for CDMA systems employing long spreading codes
have gained signi�cant interest recently. Due to the time-varying nature of users' signatures,
direct design of blind multiuser CDMA receivers is intractable. However, in the up-link channel,
the multipath parameters for all users are time-invariant and are embedded in the correlations
of the directly received signal as well as the outputs of matched �lters for di�erent users. It is
shown in this paper that the channel parameters can be estimated from the sample averages
of those correlations. When the second and fourth order moments of the random spreading
codes for all users are available, closed form solutions with low computational complexity can be

obtained. Our method is still applicable when the statistics of the spreading codes are unknown,
but at the expense of more computations. It turns out that the identi�ability of the channel
parameters only depends on the non-singularity of a constant matrix determined by known
system parameters.
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1 Introduction

Code-division multiple-access (CDMA) techniques

have demonstrated improved capacity and have

been proposed for future wireless digital networks.

CDMA systems can employ either short spread-

ing codes with period equal to the symbol dura-

tion, or long spreading codes with much longer

period. The use of short codes implies a time-

invariant structure for the interference and facil-
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itates the design of multiuser receivers. Due to

their analytical tractability, short code CDMA

systems have been extensively studied. Various

algorithms to detect a desired user have been

developed and analyzed. Typically, two di�er-

ent approaches have been proposed: one is to

build the receiver based on the estimated chan-

nel parameters from di�erent methods [1],[6]; the

other one is to directly design multiuser detectors

[3],[8],[9], obviating the channel estimation step.

However, the current IS-95 standard for direct

sequence CDMA systems employs long spreading

codes. The time-varying nature of signatures ren-

ders previous channel estimation and multiuser



detection methods not applicable.

For these reasons, signal processing techniques

for CDMA systems with long spreading codes

have gained interest recently. A number of stud-

ies for such systems have appeared; [7] presents

an iterative way to estimate the FIR channels

based on the �nite alphabet property of the input.

In [5] and [10], subspace concepts are adopted

to identify the multipath channel. A correlation

matching approach to multiuser channel estima-

tion has also been proposed in [11]. The design of

blind receivers to suppress the interference from

other cells is discussed in [2].

In this paper, we propose low complexity meth-

ods to estimate the multipath parameters for all

users of up-link CDMA channels. Observe that

the correlations of the received chip rate signal

and the bit rate outputs of matched �lters are ex-

plicitly parameterized by the channel parameters.

By matching these correlations with their cor-

responding sample averages, the time invariant

multipath parameters can be estimated within a

scalar ambiguity. When the second and fourth or-

der moments of the random spreading codes for

all users are available, closed form solutions may

be derived with low computational complexity.

Even if those statistics are unknown, they can be

estimated from the given spreading codes. There-

fore our methods are still applicable but at the

expense of more computations. The identi�abil-

ity of all channels is shown to depend only on the

non-singularity of a constant matrix. This closed

form matrix is determined by known parameters

such as the statistics of the long codes, the num-

ber of active users, the delay of arriving signals

from di�erent users and the assumed maximum

channel order. Simulations are performed to ver-

ify the applicability of the proposed methods.

2 Problem Formulation

Consider an up-link CDMA system employing

long spreading codes with J mobile stations (or J

users) communicating with a base station. User

j (j = 1; � � � ; J) transmits the information bit

stream wj(n) through a multipath channel with

chip rate coe�cients gj(m). All channels are as-

sumed to have maximum order q. During the nth

bit period user j is assigned a random spreading
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Figure 1: Long code CDMA system

code vector cj;n = [cj;n(0); � � � ; cj;n(P � 1)]T with

spreading factor P . The signal from user j ar-

rives at the base station with delay �j (in chip

periods). Then the received discrete-time signal

can be written as (see Fig. 1 and [11])

y(n) =
JX
j=1

qX
m=0

gj(m)sj(n�m� �j) + v(n) (1)

where

sj(n) =
1X

k=�1

wj(k)cj;k(n� kP ) (2)

where v(n) is the zero-mean Gaussian noise with

variance �2v = Efjv(n)j2g and wj(n) has power

�2wj
= Efjwj(n)jg. We will further assume the

following:

(1) wj(n) is zero-mean i.i.d. random in j and n;

(2) cj;k(n) is zero-mean i.i.d. random in j, k and

n, with variance �2c = Efjcj;k(n)j
2g and fourth

order moment m4c = Efjcj;k(n)j
4g;

(3) wj(n), cj;k(n) and v(n) are mutually indepen-

dent;

(4) J; P; q; �j; cj;k(n); y(n) are known.

Next we will estimate the channel parameters

gj(m) and the noise power �2v based on y(n) and

the knowledge of all long spreading codes.

For clarity of presentation, we assume a quasi-

synchronous system [4] where �j � P . The ex-

tension to asynchronous interferers is straightfor-

ward. To eliminate the inter-symbol interference

e�ect, we collect only L = P � � samples around

the nth bit interval and put them in a vector

y(n) = [y(nP + �); � � � ; y(nP + P � 1)]T with

� = max(q+ �j) (j = 1; � � � ; J). Similarly, let the

noise vector be v(n) = [v(nP + �); � � � ; v(nP +

P � 1)]T and the channel vector for user j be



gj = [gj(0); � � � ; gj(q)]
T . Then according to (1), a

simple vector model follows (see also [11])

y(n) =
JX
j=1

Cj(n)gjwj(n) + v(n) (3)

where the code matrix Cj(n) is a truncated ver-

sion from the (� + 1)-st row to the P -th row of

the �ltering matrix

~Cj(n) =

2
6666664

cj;n(0) 0
...

. . . cj;n(0)

cj;n(P � 1)
...

0
. . . cj;n(P � 1)

3
7777775

(4)

i.e., Cj(n) = [ ~Cj(n)]�+1:P;1:q+1. Their relation-

ship can thus be expressed by the transformation

matrix T

Cj(n) = T ~Cj(n); T = [0L�� IP�� 0L�q ] (5)

From (3), the output power can be easily ob-

tained

EfyH(n)y(n)g =
JX
j=1

Eftr[Cj(n)GjC
H
j (n)]g

+ �2vL (6)

where Gj = �2wj
gjg

H
j , and \tr" represents the

trace of a matrix.

Besides the directly received chip rate vector

y(n), we will further employ the bite rate out-

puts from matched �lters yk(n) = CH
k (n)y(n) for

k = 1; � � � ; J , by correlating y(n) with code ma-

trices CH
k (n). For the new output yk(n), their

correlations Rk = Efyk(n)y
H
k (n)g can also be

computed

Rk =
JX
j=1

EfCH
k (n)Cj(n)GjC

H
j (n)Ck(n)g

+ �2vEfC
H
k (n)Ck(n)g (7)

Noticing that (6) and (7) are linearly parameter-

ized by Gj and �2v , we will focus on estimating

Gj and �2v based on these second order statistics

of the output. Then SVD can be performed on

the rank one matrix Gj to obtain the estimate

for gj within a scalar ambiguity.

3 Channel Estimation with Low

Complexity

Our unknowns are embedded in the correlation

Rk and output power EfyH(n)y(n)g. In order

to obtain a closed form solution, we introduce the

vec operation which stacks all columns of a ma-

trix into a vector. To incorporate this operation

on both sides of (7), let's �rst de�ne dj = vec(Gj)

and express Rk as

Rk = EfCH
k (n)y(n)y(n)Ck(n)g

according to its de�nition. Therefore based on

properties of vec, the operation on Rk yields

rk = vec(Rk) = EfQH
k (n)vec[y(n)y

H(n)]g (8)

where

Qj(n) = C�j(n)
Cj(n) (9)

and \
" denotes the Kronecker product. Per-

forming the same operation on the right hand side

of (7) and considering (8), we can obtain

EfQH
k (n)vec[y(n)y

H(n)]g =

EfQH
k (n)

JX
j=1

Qj(n)djg + �2vEfvec[Hk(n)]g

(10)

where

Hk(n) = CH
k (n)Ck(n) (11)

Collecting (10) for k = 1; � � � ; J together and ex-

changing two sides of those equations, we have

EfQH(n)Q(n)gd + �2vEfvec[H(n)]g

= EfQH(n)vec[y(n)yH(n)]g

(12)

where

d = [dT1 ; � � � ;d
T
J ]
T

Q = [Q1; � � � ;QJ ]; H = [H1; � � � ;HJ ] (13)

However, (12) has J(q + 1)2 + 1 unknowns but

only J(q + 1)2 equations. To solve d and �2v , we

apply the property of \tr" to (6) and obtain

EfvecH[H(n)]gd+ L�2v = EfyH(n)y(n)g (14)

If we de�ne x = [dT ; �2v]
T , then (12) and (14) can

be combined in a compact form

EfS(n)gx= Efz(n)g (15)



where

S(n) =

"
QH(n)Q(n) vec[H(n)]

vecH [H(n)] L

#
(16)

z(n) =

"
QH(n)vec[y(n)yH(n)]

yH(n)y(n)

#
(17)

Therefore x can be written as

x = [EfS(n)g]�1Efz(n)g (18)

In (18), z(n) is a data-related vector, andEfz(n)g

can be estimated by its sample average ẑN =
1

N

PN
n=1 z(n) for N symbol periods. Then the

estimate for x can be obtained

x̂N =
1

N
[EfS(n)g]�1

NX
n=1

z(n) (19)

Noticing that S(n) only depends on code matri-

ces, EfS(n)g can be theoretically pre-computed if

the statistics of the long codes cj;k(n) are given.

As will be shown next, EfS(n)g is determined

by the second as well as fourth order moments of

cj;k(n). Therefore the complexity to perform (18)

is signi�cantly reduced. However, for the case of

unknown code statistics, the inversion of a sam-

ple average matrix ŜN = 1

N

PN
n=1 S(n) has to be

performed to estimate [EfS(n)g]�1.

4 Identi�ability & Consistency

Our estimator in (19) exists only if EfS(n)g is

nonsingular. Due to limited space, we only present

the following result for the deterministic matrix

EfS(n)g without proof. Under our assumptions

in Section 2 we can obtain

EfS(n)g =

2
66666664

B1 B2 � � � B2

B2

. . .
. . .

...
...

. . .
. . . B2 b

B2 � � � B2 B1

bT L

3
77777775

(20)

where B1, B2 and b are constants

B1 = EfQH
j (n)Qj(n)g

= �4c

P�1X
l1;l2=0

(Ul1;l1;l2;l2 +Ul1;l2;l1;l2)

+ (m4c � 2�4c )
P�1X
l=0

Ul;l;l;l (21)

B2 = EfQH
k (n)Qj(n)g (k 6= j)

= �4c

P�1X
l1;l2=0

Ul1;l2;l1;l2 (22)

b = vec[EfH(n)g]

= �2cLvec([Iq+1; � � � ; Iq+1]) (23)

Ul1;l2;l3;l4 = (MT ~Xl1FXl2M)
 (MT ~Xl3FXl4M)

(24)

X is a (P +q)�(P+q) Jordan matrix whose �rst

sub-diagonal entries below the main diagonal are

unity while all remaining entries are zeros, and

X0 = ~X0 = I; ~X = XT (25)

M = [Iq+1 0]
T ; F = TTT (26)

Therefore, the non-singularity ofEfS(n)g depends

on the system parameters such as �2c , m4c, P , q.

Notice that it does not depend on the channel pa-

rameters. For a set of given parameters, EfS(n)g

is expected to be full rank for typical applications

and the solution is expected to be unique. The

rank of EfS(n)g can always be a-priori checked.

To establish the identi�ability of channel pa-

rameters, 1

N

PN
n=1 z(n) in (19) has to be further

examined. Since the spreading codes are random,

we only investigate the asymptotic behavior of

our estimator asN !1. Under our assumptions

in Section 2, it can be shown that as N !1,

lim
N!1

1

N

NX
n=1

z(n) = Efz(n)g (27)

in the m.s.s. Based on (27) and the expression

for x and x̂N in (18), (19), it is not hard to show

that

lim
N!1

x̂N = x (28)

provided that EfS(n)g is full rank.

5 Discussion

Our estimator is derived from both (7) and (6).

In fact the current solution can be interpreted

as a correlation matching procedure. To further

explore this point, let us arrange rk (c.f. (8)) and

EfyH(n)y(n)g in a vector

r = [rT1 ; � � � ; r
T
J ; Efy

H(n)y(n)g]T



By introducing this new vector, eq. (15) can be

written as

r = EfS(n)gx= Efz(n)g

Then the problem can be cast into an equivalent

one, which minimizes the error between r and its

sample average r̂N = 1

N

PN
n=1 z(n). Therefore

we can build our cost function as the norm of

the matching error kEfS(n)gx� r̂Nk
2 and mini-

mize it to obtain our estimates for all channel pa-

rameters. Since EfS(n)g is a square matrix, the

least square solution to this problem is thus the

same as (19). This embedded correlation match-

ing idea is hardly new and has been employed

in [11]. From this point of view, it is not sur-

prising that similar result is obtained here (com-

pared with eq. (14) in [11]) although the current

method exploits the bit rate outputs of matched

�lters yk(n) while [11] only manipulates the chip

rate output y(n).

6 Generalization

The proposed method can be used to estimate

the multipath parameters simultaneously for all

users in the system. However, when the number

of active users grows, the involved computation

is still signi�cant in the sense that all unknowns

have to be solved. One may wonder if it can be

simpli�ed to be suitable for a single user receiver.

We will extend the method in this direction next.

Consider a general communications scenario

with M dominant users in the system1. Our chip

rate output y(n) can also be written as a superpo-

sition of signals from these M users and a colored

noise u(n) (interference plus thermal noise)

y(n) =
MX
j=1

Cj(n)gjwj(n) + u(n) (29)

Assume u(n) has autocorrelation Rint. Taking

similar steps as in (7) and (6), we obtain

Rk =
MX
j=1

EfCH
k (n)Cj(n)GjC

H
j (n)Ck(n)g

+ EfCH
k (n)RintCk(n)g (30)

1
M � J and M = 1 corresponds to a single user case.

for k = 1; � � � ;M and

Efy(n)yH(n)g =
MX
j=1

EfCj(n)GjC
H
j (n)g

+ Rint (31)

If we de�ne rint = vec(Rint) and

�d = [dT1 ; � � � ;d
T
M ]T ; �Q = [Q1; � � � ;QM ];

then after vec operation on (30) and (31), we can

obtain

EfQH
k (n)

�Q(n)g�d+ EfQH
k (n)grint = rk (32)

Ef �Q(n)g�d+ rint = Efvec[y(n)yH(n)]g (33)

From (33), rint can be �rst expressed by �d and

then substituted in (32), which yields

[EfQH
k (n)

�Q(n)g �EfQH
k (n)gEf

�Q(n)g]�d

= rk � EfQH
k (n)gEfvec[y(n)y

H(n)]g (34)

Stacking (34) for k = 1; � � � ;M together, �S�x = �z

holds where

�S = Ef �QH(n) �Q(n)g � Ef �QH(n)gEf �Q(n)g (35)

�z = Ef �QH(n)vec[y(n)yH(n)]g

� Ef �QH(n)gEfvec[y(n)yH(n)]g (36)

Therefore �x can be estimated from the sample

y(n)

�xN =
1

N
�S�1

NX
n=1

�QH(n)vec[y(n)yH(n)]

�
1

N2
�S�1

NX
n1;n2=1

�QH(n1)vec[y(n2)y
H(n2)]

(37)

Here onlyM(q+1)2 equations instead of L(q+1)2

need to be solved. Thus much lower computa-

tional complexity can be achieved especially when

M � L, e.g. M = 1, at the expense of lower

SNR.
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Figure 2: The channel estimation error for user 1

under di�erent computational loads

7 Simulations

We test our method by simulating a CDMA sys-

tem with J = 8 users in the computer. Each

user has totally N = 500 i.i.d. complex input

symbols to transmit. All users are equally pow-

ered. Di�erent multipath channels are simulated

with maximum order q = 3 chips. Each user is

assigned a complex i.i.d. random spreading se-

quence, with both real part and imaginary part

taking values from a set f�1g. The spreading

factor is assumed P = 16. Signals from di�er-

ent users arrive at the receiver simultaneously

(�j = 0). A 15dB white Gaussian noise is added

to the input.

We adopt the mean square error (MSE) of

the channel estimates as our performance mea-

sure. Since similar performance is observed for

all users, the average results from 50 Monte Carlo

runs are shown in Fig. 2 only for one user (user

1) versus the number of received bits: the dashed

line is based on the pre-computed value ofEfS(n)g

according to (20), while the solid line is obtained

in terms of ŜN estimated from given long codes.

Close performance for these di�erent approaches

can be observed from this �gure. However, the

latter method achieves a slightly better result.
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