
1

A variational framework for groundwater remediation

S. A. BELBAS
Mathematics Department

University of Alabama
Tuscaloosa, AL. 35487-0350

USA

Abstract: We present certain variants of dynamic programming and allied variational methods that arise in
problems of groundwater remediation and related identification problems.

Key-Words: Groundwater remediation, identification, forward dynamic programming, hybrid systems, parabolic
control problems.

1 Introduction and general statement
of the problems
It is well known that problems of groundwater
remediation require the development and application
of optimal control methods; this is due to the great
practical importance of groundwater remediation,
and to the large costs associated with remediation
procedures. A number of algorithms have been
developed on the basis of dynamic programming; as
representatives of a large amount of published work,
we mention [4,7].
    In the present paper, we present a number of new
aspects of dynamic programming and allied
variational calculus that are relevant to groundwater
remediation. The main aspects of our contribution
are: formulation of the problems as variable endtime
optimal control, the use of forward dynamic
programming (cf. [2]), hybrid systems approach to
control and identification, and the derivation of
necessary conditions (necessary conditions for
different types of partial differential equations may
be found in [6]).
   The relevant system dynamics consists of 3 sets of
equations: the evolution of piezometric head,
Darcy’s law for the velocity field, and equations of
transport (advection and diffusion) for the
contaminants and remediating agents. The related
fluid mechanics background may be found in [5,8].
Control (extraction and injection) is applied at
discrete locations of the spatial domain.
   In this work, we wish to emphasise the control
theoretic aspects, and for this reason we shall

formulate the appropriate dynamics in a general
form, without details about the physical aspects of
the model. Our goal is to explore the variational
methods that can be useful for optimising the cost of
remediation.

2 A class of parabolic control
problems
We describe a relatively general class of parabolic
control problems that includes many of the problems
arising in groundwater remediation and associated
identification (site characterization) problems. The
dynamics of the controlled system is given by
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The function h(t,x) solves
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The controls are the functions u tµ ( ) and the set M

of control locations { }xµ is divided into two sets

M and M+ −  with corresponding control

constraints
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The terms c t x y t xα ( , , ( , ))  represent chemical or

biochemical reactions. In order to describe those
terms, we need to introduce some notation. We

denote by I α the set of reactions that contain yα  on

the right-hand side, and by O α  the set of reactions

that contain yα  on the left-hand side; the reactions

in each of the sets I α  and O α  are labelled by an

index i, and the set of constituents yβ  on the side

that does not contain yα , for each reaction in  I α

or O α , is denoted by I i
α  or Oi

α , respectively; the

rates and orders of reactions in I α  or O α  are

k i iαβ αβλ± ±,  (with the + superscript for reactions in

I α  and the - superscript for reactions in O α ).

Also, we have decay coefficients σα ( , )t x , and the

reaction terms are
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The variable h will also be denoted, whenever it is

convenient, by y0 .
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where y t y t x M
~
( ): { ( , : }= ∈µ µ  and { }Aµ

α is the set of

maximum acceptable values for y t xα
µ( , ) . For each

admissible control policy u t u t M( ) { ( ): }≡ ∈µ µ , we

denote by τ the exit time of y t
~
( )  from G, i.e.,

τ: inf{ : ( ) }
~

= ∉t y t G                                               (7)

The functional to be minimised is given by
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3 Dynamic programming
We assume that we have an approximate model for
the situation described in section 2, with
discretisation in the space variable only; this model
has the form
dY t

dt
f t Y t u t Y Y

( )
( , ( ), ( )); ( )= =0 0                      (9)

The functional J of (8) is also discretised as

K Y T t Y t u t dt
T= + ∧

∫Φ Φ0 0
( ( ) ( , ( ), ( ))

τ
            (10)

The dynamic programming equations for the problem
(9-10) are
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The actual solution of (11) requires a second
discretisation; let Gt denote the phase-space at time
t; we use a discrete grid Gt , and for ϕ ∈G t t\ G ,

we denote by ω ϕt ( )  the set of nearest neighbours of

ϕ . Then ϕ can be expressed as
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   As an example, consider the case of a rectangular

2-D grid, with axes ϕ ϕ1 2, , and a point M in the

interior of a rectangle PQRS; then we can set
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The set-valued function ω t  can be extended to a

function ϖ t  defined for all ϕ ∈G t  by
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Further, we discretise the time-interval [0,T] (note
that this discretisation applies only to the dynamic
programming equation, not to the state-dynamics
equation):
P ( , ): { .... }0 0 0 1 2t t t t t TN= ≡ < < < < ≡

(15)
We also set δt t tk k k:= − −1 .

The discretised equation for V with discretisation in
time only would be
V t

V t f t a t a

V t for G

V T

k

a
k k k

k tk

( , )

inf{ ( , ( , , ) ( , , )};

( , ) ( ) ;

( , ) ( )

ϕ
ϕ ϕ

ϕ ϕ ∂

ϕ ϕ

=
= +

= ∈

=

+1

0

0

Φ

Φ

           (16)

For the discrete grid Gt ,  there is no natural concept
of topological boundary, and we substitute the
concept of the pseudo-boundary, defined as the set
of points of Gt  that do not have a full set of nearest
neighbours; this pseudo-boundary will be denoted by

ψbd(Gt). Eq. (16) is not directly useful for
calculations; it is necessary to have an equation over
the grid Gt ,  and we can use the equations
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The system (17) defines a recursive scheme for the
evaluation of the value function over the discrete set
P × Gt , and thus is suited for machine calculations.

4 The case of fully implicit time-
discretisation
The design of numerical schemes for the dynamic
programming equations must be sufficiently flexible
to be appended to many different kinds of
discretisation of the original state dynamics, i.e. the
system of parabolic controlled partial differential
equations described in section 2. Many existing
codes for the numerical solution of the state
dynamics utilise a finite-difference or finite-element
discretisation in the spatial variables and a fully
implicit scheme in time; the application of ordinary
dynamic programming for such discretisations
naturally leads to the problem of calculating the
transition coefficients ∂ϕ ∂ϕ( ) / ( )t tk k+1 . This is a

difficult task that involves the inversions of large
Jacobians. We have proposed in [2] a method of
forward dynamic programming that avoids these
difficulties (however, there is a tradeoff: our method
introduces new complexities, but not of the type of
matrix inversion). Here, we shall summarise our
approach.
Suppose we have a fully implicit time discretisation
for the controlled dynamical system, say
ϕ ϕ
ϕ ϕ

( ) ( , ( ), ( )) ;
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t g t t u tk k k k− =
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1

00
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The forward dynamic programming recursion for
(18) is given by
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Because the time direction is now the opposite of the
usual dynamic programming, we need a penalty term
to enforce the initial condition for (18), for example

V( , ) ( )0
1

0
2ϕ

ε
ϕ ϕ= −                                    (20)

The actual numerical solution of (19-20) requires a
second discretisation over the grid Gt ,  as in the case
of section 3.
A modification of this approach can be used when
the original dynamics is discretised by using a semi-
implicit scheme, for example a Crank-Nicolson
scheme.

5 Hybrid control
In many cases, the time interval used for the
discretisation of the state dynamics is different
(smaller) than the time interval used for making
decisions (i.e., the control function has to remain
constant over several steps of the time-discretisation
scheme for the system of parabolic partial
differential equations that describe the physical
situation). Because of the discrepancy in the two
time scales, it is reasonable to treat the time scale of
evolution of the physical system as continuous but
the time scale for control decisions as discrete; thus
we are led to hybrid control. We shall use some
ideas from [3]. We refer to the system (9) with cost
functional (10). Let τk k, , , ,...= 0 1 2  be the discrete

times of control decisions. The dynamic
programming equation now contains a function
V t Y a( , , )  parametrised by initial time, initial state,

and value of the control up to time t- ; we have
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The system (20) is valid when the decision times
τk k, , , ,...= 0 1 2  are fixed. In certain applications, it

is necessary to allow also variable decision times,
i.e. decision times that depend on certain events; this
is modelled by using certain ideas from the theory of
impulsive differential equations, developed by D.
Bainov and his school [1]. Thus the impulse times
can be functions of Y that satisfy certain conditions,
say τ τk k Y= ( ) , and then (21) is modified to

include these variable impulse times. When discrete
costs k(a,b) are associated with the decision to

change the control value from a at time τ k
−  to b at

time τ k
+ , then the impulsive condition in (21) is

altered to

                     V Y a k a b V Y bk
b

k( , , ) inf{ ( , ) ( , , )}τ τ− += +

(22)
   The ideas of hybrid control systems can be also
applied to the problem of identification. Suppose the
system dynamics contains an unknown function q(t),
i.e. we have
dY

dt
f t Y t q t= ( , ( ), ( ))

(23)
and discrete observations zk  of the state Y k( )τ are

made at times τ k . Our goal is to find a q(t) that

minimises
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The dynamic programming equations for this
problem are
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6 Necessary conditions
A set of necessary conditions for the problem (9-10)
can be useful for checking the accuracy of numerical
methods for the solution of the optimal control
problem, and also they can lead to new numerical
schemes (in the same way that, for example, the first
order necessary conditions for optimality in static
optimisation lead to a variety of numerical schemes,
such as steepest decent search, conjugate gradients,
variable metric methods, etc.). Let v tµ ( )  denote an

admissible variation of the controls u tµ ( ) , and let

ηα ( )t  be the corresponding variations of the state

y tα ( ) ; then ηα ( )t  solves
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The corresponding variation of the functional J is
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The necessary condition for a minimum is
δJ admissible v≤ ∀0                                        (28)

             By using a Green’s function representation of
 the solution of (27), we have
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At this stage, we do not deal with the variation of τ.
The variation of J becomes (after some
manipulations)
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(31)
These equations can be further augmented by taking
into account the variation of τ and by including into
the calculations the adjoint equations associated (in
the variables t and x) with the Green’s functions

G t xβ
α σ ξ( , ; , ) .
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