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Abstract: A new concept of multiobserver for a nonlinear analytic system is introduced. The
multiobserver's output is a multivalued function which estimates the whole class of states that
are indistinguishable from the current state of the system. Such states do appear because
the only assumption about the system is local observability. If the system is restricted to a
compact subset of the state space, the values of the output of the multiobserver are �nite sets.
Assuming rather local observability than global observability is a more realistic approach to the
observer problem for nonlinear systems. Local observability is also easier to check than its global
counterpart. The weak side of the weaker assumptions is loss of regularity of the (multi)observer.
We can only claim existence of continuous multiobserver, losing analyticity on a small subset of
the state space.
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1 Introduction

In a recent paper Jouan and Gauthier [5] have

proposed a construction of an observer for a

nonlinear, smooth or analytic, control system.

The main assumptions about the system were

global observability and Ascending Chain Prop-

erty (ACP). The latter assumption allowed for

computing higher derivatives of the output as

smooth functions of a �nite number of lower

derivatives. This was crutial for constructing a

new system (a dynamics of the observer) whose

state estimated �rst derivatives of the output of

the original system on the basis of the output it-

self.

We follow here the main ideas of Jouan and

Gauthier. Our goal is to weaken their assump-

tions as much as possible. First of all we give up

global observability of the system as this property

is hard to check and there are many examples of

systems which do not have this property and are
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only locally observable. There are many tests of

local observability, from simple well known su�-

cient conditions [4] to recent, more sophisticated,

characterications [1, 2, 6]. Assuming only local

observability we allow for existence of indistin-

guishable states, but they form a discrete set

which becomes �nite if we restrict the system to

a compact subset of the state space. This means

that a potential observer cannot follow the true

state of the system. The most we can get is an

approximation of one of the states that are in-

distinguishable from the true state, or all such

states. The �rst possibility gave rise to the con-

cept of quasiobserver introduced in [3]. The sec-

ond leads to the idea of multiobserver which is

developed in this paper.

The main advantage of multiobserver over qua-

siobserver lies in a bigger regularity of the former.

Though in both cases we lose analyticity of the

original system and have to live with only con-

tinuous observers, in some cases quasiobservers

can fail to be even continuous, so some spe-

cial assumptions are necessary to save this prop-



erty. This is not needed for multiobservers, since

working with the entire class of indistinguishable

states makes the output map continuous.

We also show that local observability implies a

weaker version of ACP. We can compute higher

derivatives of the output as continuous functions

of lower derivatives. As one of such functions

appear in the dynamics of the (multi)observer,

the dynamics is again only continuous.

We study here only the simplest case of ana-

lytic system with one output and without con-

trol. The main result says that a locally observ-

able system admits a continuous multiobserver.

The construction of the multiobserver is similar

as the construction of the observer given by Jouan

and Gauthier. We provide an example, giving the

explicite description of the multiobserver.

2 Local observability

Let us consider a system � de�ned on 
 � Rn

_x = f(x) (1)

y = h(x): (2)

For simplicity we will assume that the output y

is scalar. The vector �eld f and the function h

are assumed to be real analytic.

Let us recall that two states x1 and x2 are in-

distinguishable if

h(x(t; x1)) = h(x(t; x2))

for every t � 0 for which both sides of the equa-

tion are de�ned. Here x(t; x0) denotes the tra-

jectory of f starting at x0 evaluated at time t.

Otherwise x1 and x2 are called distinguishable. It

is known that x1 and x2 are indistinguishable i�

'(x1) = '(x2) for every ' of the form Lk
fh, where

Lf is the Lie derivative with respect to the vector

�eld f . These functions generate the observation

algebra H(�) of the system �. Indistinguishabil-

ity is an equivalence relation so the state space

can be decomposed into disjoint indistinguisha-

bility classes.

System � is locally observable at x0 if there

is a neighborhood U of x0 such that for every

x 2 U , x and x0 are distinguishable. � is lo-

cally observable if it is locally observable at every

point. Necessary and su�cient conditions for lo-

cal observability were developed in [1, 2, 6]. A

simple su�cient rank condition of Hermann and

Krener [4] was the �rst important achievement in

nonlinear observability theory.

Let us recall that local observability is a weaker

property than observability which means that any

two distinct points are distinguishable. Though,

from a system-theoretic point of view, observabil-

ity is a better property than local observability,

it is much harder to check it. In fact no e�cient

algorithm for checking it is known (for n > 1).

A system that is locally observable may still

have indistinguishable states, but they form a dis-

crete set, i.e. each point is isolated from the oth-

ers. If the set 
 is compact (closed and bounded)

then any indistinguishability class in 
 is �nite

and there is a common bound on the number of

elements in a class.

The criterion of local observability given in

[2, 6] is based on the sequence (Li
fh)i�0. It is

enough to compute only �nitely many of these

derivatives to check local observability on a com-

pact set. Also �nitely many is needed to dis-

tinguish states that are distinguishable. So let

us assume that the �rst N functions from the

sequence, h; Lfh; : : : ; L
N�1
f h, determine the in-

distinguishability relation. It means that if

Y = (y0; : : : ; yN�1) = (h(x); : : : ; LN�1
f h(x)),

then the indistinguishability class of x, de-

noted by [x], consists exactly of those ~x that

(h(~x); : : : ; LN�1
f

h(~x)) = Y .

From now on let us assume that 
 is compact

and � is locally observable on 
. Let � : 
! R
N

be given by �(x) = (h(x); : : : ; LN�1
f

h(x)). De-

note by e
 the quotient space of 
 with respect

to the indistinguishability relation. Then � may

be rede�ned on e
 as e�([x]) = �(x). We impose

the quotient topology on e
. Then e
 is compact

and the map e� : e
 ! R
N is continuous and in-

jective. Then 	 := e��1 is a continuous map (in

fact homeomorphism) from e�(~
) to e
. The map

	 assigns to the extended output Y the class of

indistinguishable states that produced Y . From

this we get:

Theorem 2.1. For every k � N there is a con-

tinuous function 'k : RN ! R such that Lk
fh =

'k(h; : : : ; L
N�1
f ).



To achieve exponential (multi)observers we

would have to assume that the map 'N is Lip-

schitz when restricted to a subset containing
~�(~
).

3 Multiobservers

By a multiobserver S of the system � given by

(1, 2) we shall mean a system

_z = F (z; y); (3)

x̂ = g(z); (4)

where the input y is the output of system � and

g is a multivalued map with values in Rn, such

that the Hausdor� distance between x̂(t) and the

indistinguishability class of x(t) tends to 0 when

t goes to +1. We assume that F and g are con-

tinuous in appropriate topologies and values of g

are �nite subsets of Rn.

Thus multiobserver gives simultaneously �-

nitely many estimations of the state of the orig-

inal system. They estimate the state of � mod-

ulo the indistinguishability relation for system �.

Though one could describe g(z) as a �nite se-

quence of elements from R
n rather then a sub-

set, this would lead to complications. First of all,

the number of elements in g(z) may depend on

z. Secondly, in general, g as a sequence may not

be continuous because its components may lose

continuity. On the other hand, in the subset we

do not number the elements and this allows to

preserve continuity of g as a multivalued map.

In fact, continuity is the most we can get. Ana-

lyticity is important in our considerations, but it

is lost during the process of recovering the state

(or, more precisely, the indistinguishability class

of the state) from the output. One has to expect

root-type functions which are not di�erentiable.

However this lack of di�erentiability is restricted

only to small subsets of measure zero. Besides

such a subset all the data will be analytic.

The main result of the paper may be stated as

follows:

Theorem 3.1. If system � is locally observable

on a compact set 
 then there exists a continuous

multiobserver of �.

The construction of a multiobserver is based

on the idea of Jouan and Gauthier [5]. They �rst

construct a system whose state approximates the

time derivatives of the output y of �. To achieve

this they assume the Ascending Chain Property

(ACP) which says that higher order derivatives of

the output may be expressed as smooth functions

of a �nite number N of �rst its derivatives. We

do not assume ACP. We show that local observ-

ability gives something similar, but the functions

are no longer smooth. This is however not a big

loss, as the output function (or multifunction) of

the observer is not di�erentiable in general either.

Example 3.2. Let � be the system:

_x1 = x21

_x2 = x1 � x2

y = x21 + x22:

The observation algebra H(�) is generated by:

y0 = x21+x
2
2, y1 = 2x1(x

2
1+x

2
2), y2 = 6x21(x

2
1+x

2
2),

: : : ,yi = (i + 1)!xi1(x
2
1 + x22), : : : , where yi =

Li
fh(x), i = 0; 1; 2; : : : and h(x) = x21 + x22. It is

not �nitely generated, but � is locally observable.

The following relation between functions in

H(�) holds:

y2 =
3y21
2y0

: (5)

The function '(y0; y1) =
3y2

1

2y0
is not smooth, so

ACP does not hold for the system �. But it is

continuous on the set y21 � 4y30 (the image of �2

�

de�ned below), so for this system we can con-

struct a continuous multiobserver on a compact

subset 
 � R2.

Let 
 � f(x1; x2) 2 R
2 : x1 � 0g be a compact

subset of R2. Let us consider

�2

�(x1; x2) = (x21 + x22; 2x1(x
2

1 + x22))

(as in [5]). The map �2

�
is not injective, because

� is not globally observable.

Let us consider indistinguishable states x and

~x (writen as: x � ~x). Since � is an analytic

system and the condition (5) holds, x and ~x are

indistinguishable i� y0(x) = y0(~x) and y1(x) =

y1(~x).

Let e� : 
=� ! R
2 and e�([x]) := (y0(x); y1(x)),

where [x] 2 
=� and [x] = f~x 2 
 : x � ~xg. Then



e� is injective and

im e� = im�2

�j
 � im�2

� =

f(y0; y1) 2 R
2 : y21 � 4y30g:

6y1

-
y0

y21 � 4y30

Let g := e��1 : im e�! 
=� and

g(y0; y1) = [(
y1

2y0
;

p
4y3

0
� y2

1

2y0
)] =

f(
y1

2y0
;

p
4y3

0
� y2

1

2y0
); (

y1

2y0
;�

p
4y3

0
� y2

1

2y0
)g:

We can extend g to a continuous function g� on

the entire R2. We obtain the multifunction g�

de�ned as follows g� : R2! 
=� and

g�(y0; y1) :=

8<
:g(y0; y1) if jy1j < 2y

3

2

0

( 3

q
y1
2
; 0) if jy1j � 2y

3

2

0

:

This multifunction g� is the output of the multi-

observer S�;�;
.

The function ' which discribes the relation be-

tween the functions of H(�) is well de�ned on

im�2

�
and it is smooth on int(im�2

�
).

Let '� : R2! R and

'�(y0; y1) :=

8<
:'(y0; y1) if jy1j < 2y

3

2

0

3

2

3
p
4y

4

3

1
if jy1j � 2y

3

2

0

:

Then the function '� is a continuous extension of

the function '. It is not smooth. Partial deriva-

tives of '� exist and they are as follows:

@'�

@y0
(y0; y1) =

8<
:�

3y2
1

2y2
0

if jy1j < 2y
3

2

0

0 if jy1j > 2y
3

2

0

;

@'�

@y1
(y0; y1) =

8<
:�

3y1
y0

if jy1j < 2y
3

2

0

2 3
p
4y

1

3

1
if jy1j > 2y

3

2

0

:

Since 
 is compact, then V = �2

�
(
) is also

compact, as well as '�(V ). Since partial deriv-

atives of the function '� on the compact set V

are restricted, then there is a Lipschitz constant

L for the function '� on V .

There is no smooth observer for the system �,

but we have the following continuous observer:

S�;�;
 :

(
_z1 = �k1�z1 + z2 + k1�y

_z2 = �k2�
2z1 + k2�

2y + '�(z1; z2)
;

where k1; k2 2 R and

�
�k1 1

�k2 0

�
is Hurwitz and

� 2 R+ (� � 1). The observer system S�;�;
 gives

an (exponentional) estimation of successive deriv-

atives of the output based on the known output

y(t), which is \observed" (similarly as in [5]).

Let us consider [x̂] = g�(z1; z2). Then [x̂(t)]

is an estimation of the equivalence class [x(t)] 2

=�, which contains the states indistinguishable

from the state x(t).
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