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Abstract: The application of modern controllers depend on their ability to be tuned to ful�ll speci�c

practical requirements. LQ controllers o�er optimum behaviour according to a chosen criterion. The

problem is to �nd out such a criterion that leads to desired behaviour. The paper concentrates on the

problem of tuning discrete LQ based adaptive controllers. These are based on identi�ed input-output

model of the plant. The optimization uses the state space approach with the (nonminimum) state

containing delayed inputs and outputs. This form of state permits to interpret the state space terms

directly in terms of �lters or transfer functions. The technique was developed for dynamic input and

output penalizations and considering additional dynamics in the loop. Special attention is paid to the

possibility to guarantee a safe startup of an adaptive controller. Even if the results are primarily intended

for a rather speci�c controller mentioned above, they can be directly applied in various forms of model

based predictive controllers and even in classical state space LQ controlles.
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1. Introduction

The title looks strange. Why to tune some-

thing that can tune itself. The explanation is

very simple. The self-tuning controllers (adap-

tive) are able to tune its behaviour depending on

the changing properties of the plant, the environ-

ment, generally on anything that could be mea-

sured and �nally identi�ed, it still remains to the

user to tune (usually manually) the properties of

a controller. The requirements are usually antag-

onistic and trade o�s are necessary. This makes

the tuning di�cult and subjective.

To cope with all possible requirements it is advan-

tageous to use many di�erent tuning parameters.

On the other hand practical applications of more

complex controllers, e.g. LQ controllers shows

that there is a lack of knowledge(experience) how

to tune the controller to satisfy speci�c practi-

cal requirements. Only rarely the physical back-

ground permit to formulate the control require-

ments in terms of penalizations in the quadratic

criterion. More frequently the criterion is used as

a \tuning knob" and suitable values are searched

for to obtain control process that satisfy user's

requirements and possible constraints.

The adaptive (predictive) controllers are mainly

based on input-output system models. The stan-

dard optimization based on these models de�nes

only the input and output penalizations which

are then the only natural tuning parameters (For

SISO case only their relation). It will be shown

later in the example, that this freedom is insu�-

cient to reach reasonable responses. The situation

improves when state space formulation with ob-

servers is used instead. However, the it is still

di�cult to de�ne the rules how the choice of the

state penalization matrix in
uences the behaviour

of the controller as it depends on the physical

meaning of the states.



The approach used in the paper is based on

the state space optimization with the (nonmin-

imum) state containing delayed inputs and out-

puts. Then it is possible

- to assume the state penalization matrix com-

posed of a weighted sum of rank one matrices each

having speci�c meaning.

- Simply augment the plant by a desired transfer

function.

- Force the optimization process to generate opti-

mal control law which is in some respect close to

a prede�ned �xed control law.

By this technique it is possible.

- In
uence the amplitude o� the input variable.

- In
uence the smoothness of the input and out-

put.

- Minimize the steady state errors.

- Guarantee the bump-less startup of the adaptive

controller.

First LQ optimization considered in this paper

will be reminded and then each technique will be

explained and demonstrated on simple examples.

2. Discrete time LQ optimization
based on input-output models

The optimum controller is de�ned by the crite-

rion, model of the system and by applied opti-

mization process. The adopted technique is de-

scribed in (1, ).

2.1 Criterion

The paper considers a discrete time LQ adaptive

controller based on on-line parameter estimation

of a regression model of a speci�ed order followed

by a synthesis of a controller based on a minimiza-

tion of the quadratic criterion

	 =
NX
k=1

(y(k)� y0(k))0Qy(y(k)� y0(k))+ (1)

(u(k) � u0(k)0Quu(k)� u0(k)

Here the variable y0(k) represents an output ref-

erence signal to be followed by the system output

and u0(k) possible input reference and in this pa-

per will be assumed constant over the horizon of

the minimization. Qy; Qu are weighting matrices

(scalars in considered SISO case)

2.2 Model

The assumed input-output models is a regression

model of the form

y(k) = �
nX
i=1

aiy(k � i) +
nX
i=0

biu(k � i) + ek (2)

For the minimization of 1 a state space form of

this regression model is needed

xt = Pxxt�1 + Puut = Pzt�1 (3)

where x0t = [ut; ut�1; :::; ut�nb+1; yt; :::yt�na+1; 1]

z0t = [ut; xt�1; �vt�1]

Matrices will have the form:

Px =

2
66666666664

0 0 0 ::: 0 0 0

0 ::: 0 ::: 0 0 0

b1 ::: bnb a1 ::: ana k

0 ::: 0 1 0 ::: 0

0 ::: 0 ::: 0 0 0

0 ::: 0 ::: 0 0 0

0 ::: 0 ::: 0 0 1

3
77777777775

Pu =

2
66666664

1

0

b0
0

:::

0

3
77777775

2.3 Optimization

The criterion (1) can be written in the form

J =

t0+TX
t=t0+1

~z0tQ~zt (4)

where ~z0t = [xt; y0t; u0t]

and for standard penalization (1) the penalization

matrix has the form

Q =

2
66666664

Qu ::: 0 ::: 0 �Qu

0 ::: 0 ::: 0 0

0 ::: Qy ::: �Qy 0

0 ::: 0 ::: 0 0

0 ::: �Qy ::: Qy 0

�Qu ::: 0 ::: 0 Qu

3
77777775

The optimization then proceeds considering only

the last term in (4) as the other terms cannot be



in
uenced by u(t0+T ). The process of optimiza-

tion now proceeds in such a way that variables

which can be in
uenced by u(t) (it is x(t)) are

removed by substitution from the model (3) and

then the form is minimized by u(t0 + T ). Opti-

mum value of this partial minimization is

~z(t0 + T � 1)0S~z(t0 + T � 1)

This term is used in the next step of optimiza-

tion. In the optimization process two operations

alternate from the �nal term of the criterion to

the beginning:

1.

~z(t)0(S +Q)~z(t)! (5)

z(t� 1)0P 0(S +Q)Pz(t� 1)

2.

minu(t)z(t� 1)0P 0(S +Q)Pz(t� 1)! (6)

~z(t� 1)0S ~z � 1(t� 1)

The evolution of a matrix S is equivalent with

iterations of corresponding Riccati equation. The

proposed algorithm is in reality realized in square

root form (square root factors of matricesS; Q

are used) but for convenience in the paper there

is used a standard quadratic form.

3 Techniques of tuning

State space approach has enough freedom to reach

various form of control performance. Some help

in the choice of penalization can be obtained

from the latest results in the relation between the

closed loop roots allocation and corresponding LQ

penalizations for state feedback discussed in (3,

). Using these results it is possible to compute a

penalization (state penalization matrix) that will

cause the optimum control will lead to a prespec-

i�ed closed loop pole position. Similar possibility

exist for the output feedback with observer.

Another possibility is proposed in this paper. The

approach is directly based on a speci�c form of

pseudo-state vector composed of delayed inputs

and outputs used in the optimization and the pos-

sibility to interpret state penalizations as a spe-

ci�c �lter or transfer function. There are three

modi�cations of these ideas.

3.1 Dynamic penalizations

The state space form of the criterion 4 suggests

the possibility to use more general penalizations.

To be able to construct such penalization, the fol-

lowing proposition is used Proposition 1. Any

nonnegative de�nite matrix can be written as a

weighted sum of rank one matrices.

	 =

t0+TX
t0+1

(~z0tQ1~zt + ~z0tQ2~zt + ~z0tQ3~zt + : : :) (7)

where Qi = �if
0

ifi and fi is an arbitrary vector.

As the elements of ~z are delayed inputs and out-

puts vector fi can be partitioned to a part corre-

sponding to inputs fiu and part fiy correspond-

ing to outputs. These parts represent FIR (�nite

impulse response) �lters such that instead of pe-

nalizing y(t)(u(t)) �y(t) = fiy(z
�1y(t) (similarly

�u(t) = fiu(z
�1u(t)) is used in the criterion with

a weight �i which express relative importance of

particular penalization.

The simplicity and power of this approach is

demonstrated in the example

Example 1. One of the transfer functions de-

scribing the benchmark problem in (2, ) has the

form

G(z�1) =

0:28z�3 + 0:51z�4

1� 2:0z�1 + 2:20z�2 � 1:84z�3 + 0:89z�4

The root locus of closed loop poles for varying

0 < Qu <1; Qy = 1 is shown in Fig.(2a). It is

seen that for all penalizations the dominant close

loop poles are oscillatory and the step response

has overshoot.

The oscillatory character suggests that a penal-

ization of output increments would improve the

behaviour. If an additional term is added to the

criterion penalizing the output increments

Q2 = �f 02yf2y

f2y = [0:; : : : 0:1;�1; 0; : : : ; 0]

the position of closed loop pole will change as seen

in Fig. 2b for the weights � = :1; 1; 10. Now

e.g Qu = :01 and � = 1 gives an aperiodic step

response. See Fig.3. For larger penalization of

inputs Qu the o�set in a step response will be ob-

vious. It is an inherent property of the standard

criterion where the di�erence between the output

and setpoint one term and the input forms the

second term. the penalization of input increments



instead of input itself will remove the o�set. See

Fig.4 for Qu = :3 and � = :3. The dotted step

response is a result of the optimization of the fol-

lowing criterion:

	 =

t0+TX
t0+1

(~z0tf
0

1yf1y~zt + ~z0tf
0

2yf2y~zt + ~z0tf
0

ufu~zt)

where

f1y = [0:; : : : 0:1; 0; 0; : : : ; 0]

f2y = [0:; : : : 0:1;�1; 0; : : : ; 0]

fu = [1;�1; 0 : : : ; 0; 0]

As it was seen from the example, the dynamic

penalization is able to change the closed loop lo-

cation but it is not able to add new open loop

dynamics. For example using the penalization of

input increments ( u(t)- u(t-1)) instead of u(t) re-

move the o�set, (due to correct feedforward) but

no integrator was introduced in the open loop. If

the system is a�ected by a step load disturbance,

it will not be fully compensated.

Adding dynamics

Introduction of additional dynamics to the open

loop is very important and frequently necessary.

This task is very simple and consists of three

steps.

1. The transfer function of the plant model is

just multiplied by a transfer function of desired

dynamics.
�B
�A
=

P

Q

B

A
=

PB

QA

By this step the dynamics is introduced to the

optimization 2. Optimization is done with a new

model. 3. Resulting controller transfer function

is augmented by this dynamics.

�S
�R
=

P

Q

S

R
=

PS

QR

Here the dynamics is actually added to the loop

Typical example, is adding an integrator to the

open loop to remove the the step steady-state er-

ror.

Combining control laws

When probing newly designed controller it can

occur that it will not work properly. Usual re-

action is to switch over to some standard con-

troller, change new controller and try again. Sim-

ilar problem is even more apparent when using

an adaptive controller as the unsatisfactory be-

haviour can take place also due to identi�cation.

All problems of this type can be easily removed if

the following fact is used.

Proposition 2: Minimization of a quadratic cri-

terion with a penalization matrix

QA = �

"
1 LA

L0

A L0

ALA

#

leads to the control law u�(t) = LAx(t� 1)

If this term is added to the standard criterion so

that

J =

t0+TX
t0+1

~z0t(Q+ �QA~zt (8)

then, depending on the weight � the optimization

will give a control law which is some mixture of

the standard law resulting from the �rst part of

the criterion and the control law LA. For � ! 0

this will be standard LQ control law, for � !1

it will be alternative control law LA.

Typical applications are

1. A standardly used �xed controller is used as

an alternative control law. The control process is

started with � high. The other penalization ac-

cording to previous measures are designed. Value

� is decreasing until zero if the controller works

well or is increased if something goes wrong. Then

the LQ controller can be redesigned and again ver-

i�ed its functionality.

2. The weight � can be controlled by the iden-

ti�cation process such that at the beginning � is

high and with the leaning of the system it goes

down.

3. Even more alternative controllers can be used

in the criterion with their speci�c weights. Each

control law can represent e.g. suitable controller

for speci�c product or working condition. Chang-

ing the weights the desired control law becomes

dominant.

The advantage of such process is:

- The stability of any such combination of control

laws is guaranteed by the same conditions as a

standard LQ problem.

- The controller tuning using weights in penaliza-

tion is smooth enough -Its implementation is very

simple.
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Fig. 1. Root locus for LQ design with 0 <
Qu=Qy <1
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Fig. 2. Root locus for LQ design with 0 <
Qu=Qy <1and Qdy=0.1;1;10

Conclusion

Described possibilities are mainly oriented to

adaptive versions of controllers where the opti-

mization repeats in each( generally) sampling pe-

riod, can be, however, useful even in an o� line

iteration process of tuning.
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Fig. 3. Step responce and inputs with standard LQ

(Qu=.01) dotted and with output increment

penalization - full
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Fig. 4. Step responce and inputs with Qu=.3 full and

with penalization of input increments -dotted


