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Abstract Mobile Agents can accomplish a task through different means of communication during
their life span. They can either communicate by migrating from one node to another in the
network, or by communicating with nodes of interest through traditional remote procedure calls.
It has been proven that a mobile agent communicates optimally when it mixes between migration
and remote communication taking into consideration the specific characteristics of the
application, and it is finding the proper mix of migration and remote communication, that is the
real challenge that can impact the overall mobile agent performance. This challenge is, in fact, an
optimization problem with the goal of finding the optimal agent migration sequence, and hence
the optimal agent communication strategy. This paper extends and uses previous research
conducted on mobile agents regarding their communication performance models, with the focus
on developing an efficient agent migration and communication model, which in turn will enhance
the overall mobile agent’s performance. This is achieved by providing the mobile agent with
efficient, optimal, adaptable algorithms to solve the problem of finding the critical sequence of
mixed agent migration and remote procedure calls, under certain restrictions on the sequence of
interactions of the mobile agent.
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1. Introduction
    Mobile agents communication can be
carried out in different forms. The two
extreme forms of communication is pure
RPC communication, or communication
through agent migration. In the later case, the
agent is always mobile. As such, the agent
would accomplish its task through migrating
to different nodes in the network one after the
other, and sends its reply back to its starting
node. In the earlier case, the agent is always
stationary. As such, the agent would stay in
its location and would accomplish its task
through sending messages to other network
nodes of interest. In between these two
extremes, the agent could be strategically
mobile.  In such approach the agent
accomplishes its task by migrating to some
nodes in the network, and by sending
messages to some other nodes [Chia97].
   In [Chia97] it was mentioned that mobile
agents have many advantages, which
basically include overall network traffic

reduction, reduction in connectivity
requirements and enabling control of remote
operations with real-time constraints.
However, to fully exploit the advantages that
mobile agents provide, they must be designed
in the context of the application domain.
Thus they can utilize knowledge about the
problem to be solved, in order to make
optimal mobility decisions or strategies,
which naturally translates to optimal use of
computing and network resources.
   So a comparison between the three cases
mentioned earlier was carried out in
[Chia97]. It was found that a strategically
mobile agent, or a mobile agent that extracts
relevant characteristics of the application (or
even that is aware of a subset of the
characterizing parameters of the application)
uses the network most sparingly in terms of
total transferred bytes. This is illustrated in
figure 1 below.



3562

Figure 1 - Performance of Mobile Agent’s
Different Communication Choices [Chia97]

     In figure 1 execution time goes to
minimum when communication is carried out
as a certain mix of migration and RPC, i.e.
Figure 1 - Performance of Mobile Agent’s
Different Communication Choices [Chia97]
when the agent is neither “Always
Stationary” (where number of migrations=0)
nor “Always Mobile” (where number of
migrations is maximum).
    This directs our attention to the fact that
mobile agent technology must be integrated
with non-mobile architectures (e.g.  client-
server, peer-to-peer), sometimes, in order to
realize its promise of providing scalable and
optimal use of network resources.  As such,
the major challenge for wider use of mobile
agents is the proper integration of this
technology with non-mobile concepts, while
taking into account the specific needs of
applications. Thus, the proper decision
strategy as of when to migrate and when to
communicate through messages would be the
real challenge that can greatly impact the
mobile agents overall performance.

2. Problem  Statement
   A mobile agent communicates optimally
when it combines between migration and
RPC, while taking into account the specific
needs of the application. It is finding the
proper combination that is the real challenge
that can greatly impact the overall mobile
agents’ performance. This is an optimization
problem to find the optimal agent migration
sequence, which should be adaptable to

network changes, in order to support mobile
and partially-connected computing.

3.  An Enhanced Performance Model for
Mobile Agents Interaction
  In [Stras97] a general performance model
for interaction between agents in mobile
agent systems was introduced. The two
interaction models considered were remote
procedure call (RPC) and mobile agents
(MA), since remote evaluation (REV), in the
context of mobile agents, was found to be
similar to MA in terms of their
communication needs, i.e. it involves only
the transport of agent code and some
parameters.
   The RPC and migration performance model
calculates the cost of making a single RPC
and a single agent migration from one
location in the network to another. This cost
is measured in terms of network load and
execution time. However, this model assumes
a uniform network with homogeneous nodes;
i.e. all the nodes in the network have the
same relative speed. This means that in order
to support mobile and partially-connected
computing, where processing power of nodes
vary, the model has to be modified to work
on a heterogeneous network, with various
types of nodes having different relative
speeds.

3.1. Interaction by RPC
Given a uniform network, with load BRPC (in
bytes), a simple RPC made from location L1
to location L2 would consist of the size of the
request Breq and the size of the reply Brep,
thus:

[Stras97]

   The execution time TRPC for a simple RPC
from location L1 to location L2 consists of
the time for marshalling and unmarshalling
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of request and reply plus the time for transfer
of the data on the network with delay δδ(L1,
L2) and throughput ττ(L1, L2). Marshalling
and unmarshalling time should depend on the
nodes processing power as well as the size of the
request and reply parameters.

S0 Tmarshalling  = (Breq+ Brep)/RS(L1)+  (Breq +
Brep)/RS(L2)

 ♦

Where RS(L) represent the relative speed of
the node at location L
And  TRPC (L1, L2, Breq , Brep)  = 2δ (L1, L2) +
1/τ(L1, L2) * BRPC (L1, L2, Breq , Brep)+
Tmarshalling

3.2. Interaction by Agent Migration
  If the agent consists of Bcode bytes of code,
Bdata bytes of data and Bstate bytes of
execution state and is described by BA =
(Bcode, Bdata, Bstate)

So the network load Bmig resulting
from the migration of an agent A from
location L1 to location L2 is calculated by:

[Stras97]

Where P denotes the probability that the code
is not yet available at location L2 and Bcr is
the size of the request from location L2 to
location L1 to transfer the code. And in order
to support mobile/partially connected
computing, the marshalling and
unmarshalling time would be a function of
Bdata and Bstate as well as the relative speed
RS of the communicating nodes.
     Thus Tmarshalling  = (Bdata+ Bstate )/RS(L1)+
(Bdata+Bstate)/RS(L2) 

♦

                                                       
♦ This is the enhanced RPC model; in order to
account for mobile/partially connected computing
♦ This is the enhanced agent migration model, in
order to support mobile/partially connected
computing

     Where RS(L) represent the relative speed
of the node at location L.

And TMig (L1, L2, BA)  = (1 + 2P)2δ
(L1, L2) +  1/τ(L1, L2) * BMig (L1, L2, BA)+
Tmarshalling

     If   L ≠  L2

Else   TMig (L1, L2, BA)  = (1 + 2P)2δ (L1,
L2) +  1/τ(L1, L2) * BMig (L1, L2, BA)

    Now given the above performance models
for RPC and agent migration, and given a
mobile agent that needs to accomplish a
certain task, and the communication
sequence that the agent must take in order to
finish the task. The issue is how to find the
best migration sequence, such that the overall
cost of the task is minimal, hence, the overall
mobile agent system performance is best.
This was transformed to an optimization
problem in [Iqbal98] using the unmodified
RPC and agent migration performance
models.

4. The Problem of Finding the Optimal
Agent Migration Sequence
   In [Iqbal98], the problem of Finding the
Optimal Agent Communication Strategy was
transformed into an optimization problem
with the goal of finding the shortest agent
migration path, and was represented by an
optimal decision graph of size n by z, where
n denotes the number of communication
steps and z denotes the number of migration
nodes. A tentative solution algorithm was
presented to find the shortest migration path.
However, there are some concerns about that
solution. Although it is O(nz2), yet it is
inefficient (as it expands all the nodes in the
graph whether needed or not), it is neither
adaptable to changes in network parameters,
nor to node disconnection or failure. Also it
doesn’t support mobile and partially
connected computing, which is one of the
domains for which mobile agents paradigm is
very promising. On the contrary, it uses the
performance cost model proposed in
[Stras97] as is, assuming a uniform network,
and ignoring the relative speed of nodes,
which is never the case in a real network
situation, especially if mobile computing is
involved. Also, the algorithm presented in
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[Iqbal98] is not really well formed, its
optimality is not proved, and its performance
is not measured empirically.
5. The Presented Solution
   Given the proposed enhanced performance
model for RPC and migration (the model that
counts for mobile computing), and given a
mobile agent that needs to accomplish a
certain task, and the communication
sequence that the agent must take in order to
finish the task, the issue is how to find the
best migration sequence, such that the overall
cost of the agent task (in terms of execution
time) is minimal, hence, the overall mobile
agent system performance is optimal. Such
solution should consider the case when
communication sequence of the agent is not
fixed, like in the case of conditional calls.
Also, the proposed approach should allow for
the adaptability of the solution to any
changes in the network parameters (e.g. any
change in network delay or throughput which
results in a change in communication costs)
or any node failure, overload or
disconnection.
   That is to say we need to apply an efficient
optimal search algorithm such that we get the
optimal agent migration sequence, while
guarantee a reasonable worst case (let it be
O(nz2)).
We need to make such algorithm work when
the agent’s communication sequence is
variable, we need to make it adaptable as
well to changes in network parameters and to
nodes failure and disconnection. Such
algorithm could be parameterized, as well, to
adjust the tradeoff between the agent’s
planning cost (i.e. search cost) and the
solution quality. This can be done by gray-
scaling the cost, through giving the user, for
example, the facility to group migration
nodes into groups of nodes based on their
location and relative speed. This is based on
the assumption that nodes in proximity, like
within a LAN, and nodes with similar
processing power, would have relatively the
same migration cost and RPC cost.
Choices of Shortest Path Algorithms:
Dijkstra and A* Algorithms
  There are many choices for the shortest path
algorithm that we can use for the application

of finding the optimal agent migration path
problem. One of the obvious choices is the
most famous single source, shortest path
algorithm by Dijkstra [Dijkstra59], which is
known to be an efficient optimal algorithm.

Why Dijkstra’s ?
  We chose Dijkstra’s algorithm because it is
efficient (not all of the nodes must be
expanded in order to reach for the goal), and
because it is the best-known algorithm for the
problem in theory, and the most robust in
practice [Dijkstra59] [Drey68] [Gold96].
    Dijkstra’s algorithm, is generally, a
greedy, uninformed search algorithm that
searches the whole search space in order to
reach for the optimal solution. Generally, the
complexity of the straightforward
implementation of the algorithm is known to
be quadratic. However, implementations of
the Dijkstra’s Shortest path algorithm, using
Priority Queues built on binary, k-nary or
Fibonacci heaps, result in lower complexity
for a fully connected graph with n vertices an
m arcs. It was proven that Dijkstra’s shortest
path algorithm that uses Priority Queues
based on binary heaps performs even better
than ones based on Fibonacci heaps
[Gold96].

Why A*?
    A* algorithm starts out going straight for
the goal. It looks at the path that has the
lowest cost from the beginning to the end,
and uses a heuristic function to guide it
through the way. That’s why A* although
greedy like Dijkstra’s yet is an informed
optimal search algorithm, whose performance
depends very much on the accuracy of the
evaluation (heuristic) function it uses. A*
however doesn’t change the complexity of
our problem, as compared to Dijkstra’s, yet it
can improve the performance of the average
cases, especially if the heuristic function is
accurate [Russel95].
6. Problem Definition
   Given a fixed communication sequence in
terms of CS(i), 1≤ i ≤ n, the migration cost
matrix MCost(a, b), the RPC matrix
RCost(c,d), find a migration sequence MS so
that TCost is minimal.
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The enhanced cost calculation function for
each node is:

Cost(i) = MCost(MS(i-1),
MS(i)) + Rcost(MS(i), CS(i))

The total cost of communication would be
TCost = ∑∑i=1 to n Cost(i)

Where MCost and RCost are
calculated from the enhanced
performance model, see sections
3.1, and 3.2.

7. Mathematical Formulation
Objective      Minimize:

                      TCost = ∑i=1 to n

MCost(MS(i-1),MS(i))+RCost(MS(i),CS(i))
       Subject to:

Constraints (n constraints)   1 ≤ MS(i) ≤
Z Where 1 ≤ i ≤ n
Free Variables MS(1)..MS(n) at each step of
the n steps, we have a free variable MS(i),
which stands for a decision of choosing a
node among the Z nodes at each
communication step.
Coefficients are all ones.

8. The Algorithms to Find the Shortest
Migration Sequence – Dijkstra and A*
8.1. Dijkstra’s Algorithm
  Dijkstra’s single source shortest path
algorithm, starts by expanding the starting
node S and it adds its children to a set of
Reachable Nodes. Next, every node in the set
of Reachable Nodes is evaluated based on its
cost (see cost equation in section 6). Then all
the nodes reachable from the start node and
in the set Reachable Nodes, are added to the
set of Terminal Nodes. The set Terminal
Nodes contains all the nodes that have a final
distance to the start node S, in the first step, it
will only contain the set of nodes directly
reachable from S. Then the node of minimum
cost is chosen from the set Terminal Nodes
and is expanded to its children. Every time a
minimum cost node is chosen from Terminal
Nodes and is expanded, it is replaced in the
set with its children. The algorithm keeps
repeating the previous step, until the next
node to be expanded is the end node E. The
shortest path would be the sum of shortest

edges from S to E, and it is traced back from
E to S, as the sum of the edges leading to S
with minimum total cost.

8.2.  A* Algorithm
   The A* algorithm uses the following
evaluation function to guide the search
towards the end node:

f(i,j) = g(i,j) + h(i,j)

Where g(i,j)  is the actual path cost from the
start node to reach the node(i,j) , h(i,j) is the
heuristic function estimating the remaining
cost from the current location to the goal,
and f(i,j) is the estimated cost of the cheapest
solution through node (i,j)
In our case :

f(i,j)= Nodes(i,j).RCost +
Nodes(i,j).h
Where Nodes(i,j).h is the heuristic function.

The Heuristic Function:
   The heuristic function is an estimation of
the remaining cost from the current location
to the goal. In our problem the cost from the
current node location to the goal consists of
two parts: the sum of RPC costs of the nodes
on the path to the goal, and the sum of
migration costs from one step on the path to
the other until the goal. Since the heuristic
function has to provide an estimate but
should never overestimate, and since the
lower bound of the migration cost is zero
(when the agent does not migrate and
communicates from the same node using
RPC only) then the optimistic estimation of
the migration cost is zero.
   The second part is RPC cost. Since the
agent has to pass through all the layers in the
ODG (Optimal Decision Graph) from the
current node to the end node. At each layer
the best case is that the agent travels to the
cheapest RPC node. Then the most optimistic
estimation of the RPC cost is the summation
of the cheapest RPC node in each layer down
to the end node. Therefore, the heuristic
function value is the sum of minimum RPC
costs from the current node to the end. It is
clear that it is an admissible heuristic,
because it is optimistic and ignores the
migration cost, thus it thinks that the cost of
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solving the problem is less than it actually is.
This optimism transfers to the evaluation
function f(i,j) itself, which will thus never
overestimate the actual cost of the best
solution through (i,j) [Russel95]. At the same
time, the heuristic function is not very
inaccurate, because, in its optimism about the
cost of the remaining path to the goal, it only
ignored the migration cost, which should be
always much smaller than the RPC cost for a
typical mobile agents application domain.

9. Simulation Results
  Both Dijkstra and A* algorithms, are
applied on the problem of finding the agent’s
shortest migration sequence, given a
communication sequence. The two
algorithms are run on the same set of inputs,
for different values of Z (Number of the
migration nodes) and N (Number of
communication steps).Since the two
algorithms are optimal, and since A* uses a
permissible heuristic function, the result was
always the shortest migration path. However,
the overall cost, in terms of execution time
paid by the A* algorithm, proved to be much
less than the corresponding cost paid by the
Dijkstra’s algorithm in order to find the
shortest path. figures 3 and4 illustrate the
gain in cost reduction as a result of using A*
for different number of migration nodes (Z)
and for different number of communication
steps (N).

Figure 3 - Costs of finding the shortest path for different
values of Z, N=80    Figure 4 - A* improvement in terms of
cost reduction

   The grouping of the migration nodes is
carried out by running the A* algorithm

using different tolerance values•. Figures 5
depicts the effect of increasing grouping
tolerance on the size of the migration set for
different values of N. The bigger the
tolerance, the more the grouping and hence,
the less the size of the migration set Z.
Figure 6 further demonstrates the effect of
increasing grouping on the cost of the
algorithm, where it is shown that the bigger
the grouping tolerance value the less the cost
of the algorithm. Finally figure 7 highlights
the tradeoff between solution cost and
quality, as gray-scaled by grouping.
In order to simulate a modem-connected
computer, a laptop that connects and
disconnects from the network as in the case
of mobile and partially connected computing,
some random node costs were increased. A
node, whose cost increases to an infinite
value, represents a node that failed or
disconnected. The results were tested on
different data sets and different cost changes,
and the agent’s awareness of mobile and
partially connected computing was
designated by its dynamic changing of the
path when it gets to be non-optimal as a
result of the change, and its dynamic choice
of the new optimal path, that avoids the failed
or disconnected node. Table 1 below
illustrates the effect of mobile computing
support in the presented solution. The minus
sign in path 2 designates the original path
before the change, the plus sign designates
the changed path segment as a result of the
node going mobile. N= 20,  Z=100, Y=5, Node No.
28 went mobile in Path 2 at communication step #11
The adaptability of the shortest path
algorithm, was tested by simulating some
changes in the network environment like
changes in RPC cost of a node, or changes in
the migration cost to a node. This would
happen if a network node fails, disconnects
or gets overloaded, or changes happen in
links delays or throughputs. The A*
algorithm was run several times for different
values of N, every time simulating different

                                                       
• Tolerance is the input value to the grouping algorithm, to
which the difference between nodes is compared. Difference
between nodes is measured in terms of the Euclidean distance
between them. The nodes with Euclidean distance < Tolerance
are grouped together.
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cost changes, and the total costs incurred by
the adaptable and the non-adaptable
algorithms are illustrated in figure 8. The
results show that the adaptable algorithm
always out-performs its non-adaptable
counterpart, that has to repeat the whole
process of calculating the shortest path from
the start node, should any change in network
conditions occur. Figure 9 shows the
percentage cost gain as a result of
adaptability.

10. Conclusion
     With the above promising results, the next
step in this research will be to support for
real-time constraints in the mobile agent’s
application domain. So if we have a shopping
agent that has a shopping list to buy, every
item on this list is to be bought from a
different shop, and the sequence of shops are
given to the agent beforehand (like in our

case so far) but every shop, being in a
different country, has a different working
hours schedule. Then the problem of the
agent would be to optimize the migration
path while satisfying such real-time
constraints of shops working hours, so that it
doesn’t have to wait. So based on the work
done in this research, the next challenging
step is to adapt the presented methodology to
support real time constraints.
   Other future trends in this research include,
support for persistent storage, so that an
agent may leave some of its data (e.g. results)
at one host, carry a small part of it, and yet be
able to remotely access the saved data if
necessary. Also, Getting information from
network routers, and some hosts about
network connectivity and delays.
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     Figure 5 – Effect of grouping tolerance on    Figure 6: Effect of increasing grouping         Figure 7: Tradeoff between cost reduction
and
                      the size on the migration set,                       tolerance; Group size, on                              solution quality as a result of
       N=80                                                          algorithm cost, N=80                                    grouping, N=80

Comm Step Path 1 Path 2 Comm Nod Comm Step Path 1 Path 2 Comm Node
11 28 28 - 2 1 1 1 - 1
12 28 1 + 2 2 1 1 - 1
13 1 1 + 1 3 1 1 - 2
14 1 1 + 3 4 1 1 - 3
15 1 1 + 1 5 1 1 - 1
16 1 1 + 4 6 1 1 - 1
17 1 1+ 1 7 1 1 - 1
18 1 1 + 3 8 1 1 - 3
19 1 1 + 4 9 28 28 - 2
20 1 17 + 1 10 28 28 - 4

Table 1 – Mobile Computing: node #28 disconnection

     Figure 8 – Adaptable vs. Non-adaptable algorithms                      Figure 9 – Percentage cost gain as a result of adaptability
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