Animation of Conceptual Models

using two Concurrent Environments: an overview”

Patricio Letelier Pedro Sénchez Isidro Ramos
Department of Information Systems and Computation
Valencia University of Technology, 46020 Valencia
SPAIN

Rafael Corchuelo

Department of Languages and Information Systems
University of Sevilla, 41012 Sevilla
SPAIN

Abstract

Abstract: OASZS is a formal approach for the specification of object oriented conceptual models.
In OASZS conceptual schemas of information systems are represented as societies of interacting
concurrent objects. Animating such models in order to validate the specification of information
systems is a topic of interest in requirements engineering. Concurrent Logic Programming and Petri
nets are suitable models for distributed computation allowing a natural representation of concurrence.
Using Concurrent Logic Programming or Petri Nets, OASZS specifications are animated according
to OASZS execution model. In this paper, we show our work in translating O.ASZS concepts into
concurrent environments. This work has been developed in the context of a CASE tool supporting
the OASZS approach. Our aim is to build a module for animation and validation of specifications.
A preliminary version of this module is presented.

Key-Words: Formal Specification, Animation of Specifications, Object-Oriented Models.

1 Introduction

Conceptual models, representing the functional re-
quirements of information systems, are a key fac-
tor when linking the problem and solution do-
mains. Building a conceptual model is a discovery
process, not only for the analyst but also for the
stakeholders. The most suitable strategy in this
situation is to build the conceptual model in an it-
erative and incremental way, through analyst and
stakeholder interaction. Conceptual modeling in-
volves four activities: elicitation of requirements,
modeling or specification, verification of quality

and consistency, and eventually, validation.

Formal methods for conceptual modeling pro-
vide improvements in soundness and precision for
specifications, simplifying their verification. How-
ever, when considering elicitation and require-
ments validation, prototyping techniques are more
used. Hence, it is interesting to obtain a combina-
tion of both approaches.

This work uses O.ASZS [8] (Open and Active
Specification of Information Systems) as a formal
approach for object-oriented conceptual specifica-
tion of information systems. This is a step for-
ward in a growing research field where validation

*This research is supported by the “Comisién Interministerial de Ciencia y Tecnologia” (CICYT) through the MENHIR

proyect (grant no. TIC97-0593-C05-01).

of formal specifications through animation is being
explored [14]. In this sense, some other proposals
close in nature to OASZS are [6] and [5]. The
differences, though, between these works and ours
are basically determined by features of the under-

expected
behavior

scenarios eee—
\ Graphical ~ |—>
specification specification

elements

modification &
extension
of scenarios

|

behavior

analysis
of results

— animation
/ environment
.
B computed ﬁ @ @

lying formalisms and the offered expressiveness.
According to the presented results, the state of
art is similar and is characterized by preliminary
versions of animation environments.

Graphical I
scenarios =
-

builder

Repository
based on
the OASIS
environment || model
——

Graphical

-

Prototype
(concurrent
logic program

Translator

(=

Figure 1: A framework for incremental specification of requirements

Fig.1 shows our framework for elicitation,
modeling, verification and validation of require-
ments. Elicitation is achieved by using scenarios
[12]. The expected behavior and elements of a
given specification are extracted by the analyst
from scenarios. The graphical scenario builder
helps define scenarios in a suitable way. Func-
tional requirements are modeled using a graphical
specification module based on OASZS. Concep-
tual models can be verified according to OASZS
formal properties. At each stage of the require-
ments specification process it would be possible to
validate the behavior of the associated prototype
against the expected behavior. This comparison
could lead to updates or extensions of existing sce-
narios. This cycle continues until the requirements
are compliant with the proposed set of scenarios.

Experiments have been carried out using
Object-Oriented Petri Nets [13] and Concurrent
Logic Programming [9] as semantic domains for
OASIS specifications. Correspondences between
OASIS and these environments have been imple-
mented in a translator program. The translator
takes an OASZS specification stored in the repos-
itory and generates automatically a Concurrent
Logic Program or a Petri Net that constitutes a

prototype for the corresponding conceptual model.
Furthermore, through a preliminary version of the
graphical animation environment, the analyst can
interact with the prototype in a suitable way. Re-
garding Concurrent Logic Programming, we have
worked with the concurrent logic languages Par-
log [2] and KL1 [1]. Regarding Petri Nets we have
worked with Object-Oriented Timed Petri Nets [3]
and Object Petri Nets [7].

2 Why a concurrence model?

Considering the utility of this work in require-
ments validation of OASZS specifications, it is
essential to obtain the nearest implementation so-
lution to the O ASZS semantics. If so, we will have
a way to provide formalization for the translation
process. In this way, we think the best choice is
to give each object an execution thread.

Fig.2 shows four ways of implementing concur-
rent object systems. The horizontal axis goes from
purely sequential to purely concurrent. The verti-
cal axis goes from a no object-oriented paradigm
to a completely one. In three of these ways, a
monitor should be necessary to control the activ-
ity of the system. The first (sequential, -O0) is

the simplest: there is only one monitor and there
are objects whose state can be represented by a re-
lational database, for instance. The second (con-
current, -O0) gains in concurrence by increasing
the number of active processes. However there is
no object representation. The third way considers
each object as an independent unit of execution

v

A

- 00

but there is a quantum of running time for each
object. The fourth, which we chose in our model,
is fully concurrent and each object is considered
as an independent unit of execution. Concurrent
Logic Programming and Petri Nets allow repre-
senting directly systems of this kind.

7YY

Sequential

Concurrent

Figure 2: Implementation of concurrent object systems.

3 OASIS

OASZS is a formal object-oriented language for
the specification of information systems at a high
level of abstraction. An OASZS specification is a
presentation of a theory in the used formal system
and is expressed as a structured set of class defini-
tions. Classes can be simple or complex. A com-
plex class is defined in terms of other classes (sim-
ple or complex). Complex classes are defined by
establishing relationships among classes. These re-
lationships express aggregation or inheritance. A
class has a name, one or more identification mech-
anisms for its instances (objects) and a type or
template that is shared by every instance belong-
ing to the class. The state of the object in a given
instant will depend on the actions occurred in its
lifetime until the moment during which it is ob-
served. In this way, an object is seen as an observ-
able process. Thus, an object has a life character-
ized by the occurrence of actions (that could be ei-
ther requested or provided). In this way, an object
is seen as client or server depending on whether the
object is requesting or providing services.

Services provided in an atomic level by an ob-

ject are referred as events. Each object has a cre-
ation event (starting its life) and optionally a de-
struction event (finishing its life). Events can be
organized in a molecular level as processes. Beside
the own semantics used when specifying processes,
we add another one in order to make a distinc-
tion between prohibition (protocol) and obliga-
tion process (operation). An obligation process
is a service offered by an object in a higher level.
Particularly, a transaction is an obligation process
having the implicit all or nothing policy. A pro-
hibition process does not allow the execution of
some sequences of actions in an object life. In
OASZS, an information system is regarded as a
society of autonomous and concurrent objects in-
teracting with each other by the occurrence of ac-
tions. An action is a tuple including the client, the
server and the requested service.

The visibility between objects is determined by
a interfacing mechanism. Every object encapsu-
lates its own state and behavior rules. As usual
in object-oriented environments, objects can be
seen from two points of view: static and dynamic.
From the static perspective, the attributes are the
set of properties describing the object structure.

The object state in a definite instant is the set of
structural properties values. From the dynamic
perspective, the evolution of objects is character-
ized by the “change of state” notion. The occur-
rence of actions implies changes (by means of val-
uations and derivations) in the values of the at-
tributes. Object activity is determined by a set
of rules: preconditions, integrity constraints,
triggers, protocols and operations. A step is
the set of actions executed at the same instant by
the object. Every object has an unique identifier
(0id) set by the system. Objects are referred by
one or more identification mechanisms belonging
to the problem space. An identification function
sets a mapping between the identification mecha-
nisms and the oid. The type or template describes
the structure and behavior of every object.
OASIZS is a formal specification language that
allow defining conceptual schemas according to the
object model that has been briefly presented.

3.1 OASIS semantics

The semantics of OASZS is defined by means of
Kripke structures (W, 7, p) which include an uni-
verse of states w. To each class we associate an
accessibility relation p in such a way that a pair of
states (s,t) is in that relation if and only if there
is a transition going from the state s to the state
t. Let us call W the set of all possible worlds
reachable by an object. Let us call F' the set of
state well formed formulae (wff) being evaluated
over the current state of the object. Let A be the
set of ground actions of the object template and
24 the set of all possible instantiated steps. The
functions 7 and p are defined as follows:

T:F —2W

p:24 (W —W)

The function 7 says in which worlds a state
formula (in First Order Predicate Logic) is true.
The function p is a binary relation between worlds
(declarative semantics of the language). Given a
step pu € 24, w,w’ € W then (w,w’) € p(u) if and
only if occurring p implies the transition between
the worlds w and w’.

3.2 OASIS expressed in DL

In [10] Deontic Logic is described as a variant of
Dynamic Logic (DL) [4]. The definition of Deontic

operators in Dynamic Logic is:

“the occurrence of a is forbidden
in states where 1 is satisfied”.
“the occurrence of a is obligatory
in states where 1 is satisfied”.
“in states where 1 is satisfied,
immediately after a occurrence,
¢ must be satisfied”

¥ — [a]false
¥ — [—a)false

¢ — [al¢

where v is a well formed formulae that char-
acterizes an object state when the action a occurs
and —a represents the non-occurrence of the action
a (i.e., only other actions different from a could
occur). Furthermore, there is no state satisfying
the atom false. This represents a state of system
violation. Thus, one action is forbidden if its oc-
currence leads the system towards a violation state
and one action is obligatory if its non-occurrence
leads the system towards a violation state. The
OASIS template is mapped to the formulae pre-
viously presented.

These formulae constitute a sublanguage of the
language proposed and formalized in [15]. In [§]
OASIS is presented as a specification language
with a well defined syntax. Here is an example of
part of a simple vending machine system using the

OASIS syntax.

conceptual schema vending__machine system
class vending _machine
identification
number: (number);
constant attributes
number: nat.
variable attributes
n_chocs: nat;
credit: nat(0);
switch _on: bool(false);
events
set new;
coin_in;
coin_out;
choc;
light empty;
operations
CANCEL:
CANCEL1= {credit>1}::coin_out.CANCEL1
+ {credit<=1}::coin_out;
triggers
:light _empty when
{nchocs= 0 and switch _on= false};
valuations
[coin _in] credit=credit+1;

[::coin out] credit=credit-1;
[choc] nchocs=nchocs-1, credit=credit-1;
[::light empty] switch on=true.
preconditions
choc if {credit>0 and nchocs>0};
CANCEL if {credit>0};
protocols
GETCHOC:
GETCHOC1= coin_in.GETCHOC2;
GETCHOC2= choc.GETCHOC1 +
coin_in.GETCHOC3 +
:icoin_out.GETCHOCT;
GETCHOC3= choc.GETCHOC2 +
coin_in.GETCHOC4 +
:icoin_out.GETCHOC2;
GETCHOC4= choc.GETCHOC3 +
::coin_out.GETCHOCS;
end class

class customer
identification
name:(name);
constant attributes
name:string;
events
add new;
remove destroy;
end class

interface customer(someone)
with vending machine (someone)
services(coin _in,choc);
end interface

interface vending machine(someone) with self
services(light _empty, coin_out);

end interface

end conceptual schema

In this example there are two classes:
customer and vending machine. The objects in
both classes are active. A vending machine ob-
ject is forced to self-trigger an action with the
event light_empty whenever the trigger condi-
tion is satisfied. Also, the vending machine ob-
ject has to return all coins when cancel button
is pressed. Although customer objects do not
have explicit triggers, they have an interface with
vending_machine objects and this allows them to
require actions associated with the visible events.
Thus customer objects are active objects as well.

4 Concurrent Logic Program-
ming and OASZS

Concurrent logic languages arise as an attempt to
improve the efficiency of logic languages by ex-
ploiting stream AND parallelism. Besides, they
are high level programming languages and conve-
nient for parallel and distributed systems.

We are interested in modeling objects as per-
petual processes according to the OASZS execu-
tion model. The identity of the object is the name
of an input stream argument of the process. Works
in this direction are principally based on making
0O extensions to concurrent logic languages. Al-
though implementation aspects are common, our
motivation is different, we want to generate auto-
matically a concurrent logic program correspond-
ing to an OASZS conceptual model.

It is said that an object is implemented as a
perpetual process because among the subgoals in
which an object is reduced the same object ap-
pears. This produces the effect of continuity in the
object life. Whenever the object goal is thrown as
subgoal, in the reduction some of its attributes
may be modified. Thus a change of state due
to the occurrence of the associate action is rep-
resented. The effect “to execute an action” is ob-
tained in the reduction when the new input chan-
nel is used as the original one without considering
the last executed action. The formulae that define
the change of state when the event is executed are
subgoals that assign new values to the attributes
of the object. In [9] a set of mappings between
OASZS and KL1 has been established.

Following theses mappings, a translator from
OASZS to KL1 has been implemented. This
translator takes as input a system specification
from an OASZS repository and produces a KL.1
program that is compiled in order to obtain the
prototype. The translator and the prototype are
programs running in a Unix workstation. The in-
terface has been implemented in Tcl/Tk using the
Tecl plug-in for Netscape.

In OASIS the system behavior is determined
by the behavior of its objects. An object behavior
can be observed by analyzing the actions occurred
and the states reached by the object. Thus, the
animation of an OASZS specification allows ex-
amining actions and states of the objects.

[[pu= [[essnee [y

£

® a
Tt
m-
o - -
pre—— |
L) —
o d I3 B3 T |
-ll j=[3]
S L T T P a

21 il e ICHLE

by e et et o v B Tl

st ol mambe | v 0] e s [2 H LY

Figure 3: An animation session.

Fig.3 shows the interface of a prototype of
our animation environment. The object society is
drawn in the upper left area. Objects are selected
by clicking on them. On the right the traces of ac-
tions of an object (or object group) are listed. The
list of traces can be filtered according to the kind
of actions (sent, received, in conflict, executed or
rejected). In the state area the state of the object
is presented (only when one object is selected).
Buttons play, pause, stop, forward and review are
provided in order to control the session of anima-
tion. When the animation is paused it is possible
to explore the traces of actions and states at pre-
vious instants. Eventually, the two entry widgets
allow building an external action sent by the ana-
lyst in representation of one object in the system.

5 Petri Nets and OASZS

“Petri Nets are a graphical and mathemati-
cal modeling tool applicable to many systems.
They are a promising tool for describing and
studying information processing systems that
are characterized as being concurrent, asyn-
chronous, distributed, parallel, nondeterministic
and/or stochastic” [11]. Due to the mathemati-
cal background of Petri Nets, all aspects related
to formalization are more feasible. Also, analy-
sis techniques can be applied to get properties of

liveliness, etc. The enhancements of Object Ori-
ented Petri Nets (OOPN) include for instance to-
ken values to be identifiers, inheritance, test and
inhibitor arcs, etc. Tokens can encapsulate the
activity determined by another Petri Net. OOPN
have a single hierarchy that includes both token
types and subnet types, thereby allowing multi-
ple levels of activity in the net. Furthermore,
OOPN provides functions to evaluate the state
of the net without changing its state. The possi-
ble use of superplaces and supertransitions makes
OOPN suitable to model both synchronous and
asynchronous interactions between objects. Each
instance of an OOPN class could be an indepen-
dent object passing on messages between objects
through tokens. The notion of OOPN superplace
permits synchronous interaction. One transition
deposits (or extracts) a token in (from) the su-
perplace. This operation is synchronous with an
internal transition of the superplace that accepts
(or produces) the token.

We have experimented using the CodeSign
tool [3] in order to implement and animate
OASZS specifications by implementing its exe-
cution model. How the main features of the
OASZS can be naturally and directly represented
in OOPN has been analyzed [13]. Object Oriented
concepts (such as classes, instances, interaction
between objects, encapsulation, etc.) and spe-

cific OASZS concepts (such as preconditions, val-
uations, triggers, protocols, and operations) have
been addressed by using the properties of the
OOPN.

The support of multiple levels of activity in

TyCluns Bogwesn Mrajec prawba? oy Dl S

the OOPN makes the design of architectures easy
enough to prototype a society of concurrent ob-
jects. Now we are working to obtain CodeSign
code automatically from an O.ASZS specification.

I.ii:f-j::hl 0 I I)

|1-| T .--j

Figure 4: CodeSign Environment.

Fig.4 shows two OASZS classes (the grey
boxes on the right) implemented in CodeSign us-
ing the Petri Net model. The bigger place in each
class is the container of the instances of that class
(notice that every object will have its own Petri
Net instantiated.). The rest of the net is needed
to direct the arrived actions towards the server
object. The external net fragment is needed to es-
tablish the communication between the instances
of both classes.

6 Conclusions

The main features of the OASZS language can be
more naturally and directly represented in a con-
current environment. Using the execution model
of OASZS as a guide we can obtain a useful an-
imation of the O.ASZS specification. Our anima-
tion is only applied to purposes of requirements
validation and do not claim to be the final soft-
ware product.

We have built a translator program to ob-

tain automatically both a concurrent logic pro-
gram and a OOPN from OASZS specifications
using the established correspondences. This work
is being integrated into a CASE tool for system
modeling supporting the OASZS approach. We
have addressed the object-oriented concepts, and
although we have focused on OASZS, it could be
extended to other similar languages.

The fidelity of the obtained concurrent imple-
mentation in relation to the OASZS system spec-
ification is a matter that is still being studied. In
this case the verification and demonstration tasks
would be supported by three important factors:
firstly at the conceptual level the model is de-
scribed in a formal language, secondly the abstract
execution model is inspired by the semantics of
that formal language, and eventually, concurrent
programming languages and Petri Nets have a for-
mal base. These factors do not determine the re-
quired justification for the translation process but
give a way of formalization on which we are work-
ing.

We are currently considering the incorporation

of advanced concepts such as complex classes and
complex communication mechanism.

References

1]

T. Chikayama. KLIC User’s Manual. Insti-
tute for New Generation Computer Technol-
ogy, Tokyo JAPAN, 1995.

T. Conlon. Programming in PARLOG.

Addisson-Wesley, 1989.

R. Esser. An Object Oriented Petri Nets Ap-
proach to Embedded System Design, PhD
Thesis, Swiss Federal Institute of Technology,
Zurich, 1996.

D. Harel. Dynamic Logic. In Handbook of
Philosophical Logic II, editors D.M.Gabbay,
F.Guenthner; pages 497-694. Reidel 1984.

P. Heymans. The Albert II Specification
Animator. Technical Report CREWS 97-13,
Cooperative Requirements Engineering with

Scenarios, http://sunsite.informatik.rwth-
aachen.de/ CREWS /reports97.htm.

R. Herzig and M. Gogolla. An animator
for the object specification language TROLL
light. In Proc. Collog. on Object-Orientation
in Databases and Software Engineering, Mon-
treal 1994.

C. Lakos, From Coloured Petri Nets to Ob-
ject Petri Nets, Proceedings of the 16th Inter-
national Conference on the Application and
Theory of Petri Nets, LNCS 935, Torino,
Italy, Springer-Verlag, 1995.

P. Letelier, I. Ramos, P. Sanchez and O.
Pastor. OASIS 3.0: A Formal Approach
to Object-Oriented Conceptual Modeling.
SPUPV-98.4011, Servicio de Publicaciones

[10]

[14]

Universidad Politécnica de Valencia, 1998. (in
spanish).

P. Letelier, P. Sénchez , I. Ramos. G. Proto-
typing a requirements specification through
an automatically generated concurrent logic
program. Gupta (Ed.) Practical Aspects of
Declarative Languages, Lecture Notes in
Computer Science LNCS 1551, pp. 31-45,
Springer-Verlag, 1998.

J.-J.Ch. Meyer. A different approach to de-
ontic logic: Deontic logic viewed as a variant

of dynamic logic. In Notre Dame Journal of
Formal Logic, vol.29, pages 109-136, 1988.

T. Murata. Petri Nets: Properties, Analysis
and Applications. Proceeding of the IEEE,
Vol. 77, n°4, April 1989.

C. Rolland, C. Ben Achour, C. Cauvet, J.
Ralyté, A. Sutcliffe, N.A.M. Maiden, M.
Jarke, P. Haumer, K. Pohl, E. Dubois and P.
Heymans. A Proposal for a Scenario Classifi-
cation Framework, Technical Report CREWS
96-01, http://sunsite.informatik.rwth-
aachen.de/ CREWS /reports96.htm.

P. Sénchez, P. Letelier and I. Ramos. Con-
structs for Prototyping Information Systems
using Object Petri Nets, Proc. of IEEE In-
ternational Conference on System Man and
Cybernetics, pages 4260-4265, Orlando, USA,
1997.

J. Siddiqi, I.C. Morrey, C.R. Roast and M.B.
Ozcan. Towards quality requirements via an-
imated formal specifications. Annals of Soft-
ware Engineering, n.3, 1997.

Wieringa R.J. and Meyer J.-J.Ch. Actors,
Actions and Initiative in Normative System
Specification, Annals of Mathematics and Ar-
tificial Intelligence, 7:289-346, 1993.

