A Symbolic Portable Debugge for Compilers
that Generate C Code

JosE M. PRIETO, JOSE L. ARJONA, RAFAEL CORCHUELO, MIGUEL TORO, AND DAVID RuIZ
Departament de Lenguajesy Sistema Informaticos
Facultad de Informaticay Estalistica Universidal de Sevilla
AvenidadelaReinaMerceds s/n 41.012 Sevilla
ESPANA — SPAIN

Abstact: Most compiless translae high-level programmirg language into machire code but, if we are in-
tereste in portability, this might not be a goad idea becaus machire coce is nat portabe amorg different
platforms Thisisthe reasm why many compiles do not produe@ machire code as output but ANSI C code.
The problam is that the code thee compiless produe is not debugabk becaus it does not include any refer-
ences to the symbok appearig in the origind program.

We have investigate somne technique tha allow us to bridge this gap As a result we have produced
alibrary compiless tha generat C cocde can easily incorporag in orde to generag self-déougging programs.
Thispape aimsto explain its main features and also repors sore experimentaresuls tha show tha it performs

quite well.

IMACSIEEE CSCC'99 Proceedings, Pages:3501-3506

Key words symbolic debuggers compiles tha generag C code as output portability, GDB.

1 Introduction

Compiless usually generat machire coce as output,
but, in general this is nat a goad idea if we are in-
terestd in portability becaus if we wart to port our
compile to othe platforms we neal to sper a lot
of time to rewrite our code generata In addition the
effort to maintan differert versiors of our compiler
increasesOn the othe hand C hasbecone adefacto
standad available in mog platforms Itishighly port-
able becaus mog compiless are ANSI compliant,
ard there are commercih or free compiless tha gen-
erake cock so optimised tha its performane is some-
times comparale to the performane of a machine
cock progran written by a human programme This
isthereasm why many compiless do not produ@ ma-
chine code as output but ANSI C code Lately, these
compiless are sproutirg out at an increasiig pace A
sd of goad examples include ISE Eiffel [8], Small
Eiffel [9], SR [6], Ingres 4GL [10] or PL/SQL [7],
ard the list increase evely day becaus this idea is
velry attractve.

Nevertheless programmes rarely write correct

programs ard they usualy neal to use debugges to

find out the reasm why their prograns do not work

propery unde certan circumstances At present,
there are sone very goad commercid debuggers as
well as wonderfu free debuggers GDB [2], the de-
bugge by GNU, stand out becaus it is available in

mog platforms ard it incorporate many advanced
debugging facilities. Unfortunatey, nore of thes de-
bugges is suitabk to debug the C coce generatd by

the compiless we have just mentioned The reason
istha if we usal suc a debugge on this code we
would trace a C progran insteal of the origind pro-

gram written in Eiffel, Ingres 4GL or PL/SQL.

We have investigate somre techniqus that allow
usto bridge this gap ard the resut we have produced
is a library compiless tha genera¢ C code can eas-
ily incorporaé in orde to generat self—déugging
programs This way a compile can produe portable
ANSI C coce asoutput which can be fully optimised,
while keepirg it debugable Thisis a nice featue of
our debugge othess do nat support.

This pape is organisel as follows. sectin 2

gives some general information about debugger con- name "class description”

struction, and describes our library; section 3 com- _ .
pares our solution with GNU GDB, and section 4 Here,nameis the name a programmer has given
reports some experimental results; finally, section 5{0 @n object in a prograntlass s a character that

shows our conclusions and the work we are planningdesc"ibes what it is (a variable, a routine, a constant,
on doing. a type, and so forth), ardescription is a string

that describes its features (for example the type of a

variable, the number of dimensions of an array, the
2 Making self-debugging programs fields a record has, and so forth).

Stab files are divided into several sections, each

We assume that we are interested in a language callegk them describing the set of symbols that appear in a
“X”, and that we have a compiler that translates X syntactic scope. Languages usually provide a way to
code into ANSI C code. Thus, after compiling an modularising programs. For instance, typical imper-
X program, we need to use a C compiler in order toatjve languages provide subroutines, object—oriented
translate generated C code into a set of object mOdranguages provide classes, and other languages such
ules that a linker can combine with external libraries 35 Modula provide modules that encapsulate imple-
to produce an executable program. Our idea consistgentation details. Each module can be viewed as a
of making this executable program self-debugging.gifferent scope with its own naming space, and the
i.e., instead of implementing the debugger as a sepstructure of a stab file closely resembles this modules,
arate tool able to trace another program, we have dethe difference being that scopes cannot be nested in

cided to incorporate the debugger into the generateg stab file. Consider, for example, the following pro-
C code so that the final executable can debug itselfgram written in Pascal:

This makes our solution very portable because we

do not need to rely on specific, platform—dependent 1 program Example(Output);
ways to controlling the execution of another program. 2 Yar n: Integer;

Y 9 . P g_ * 3: function Fact(num: Integer): Integer;
On the contrary, the executable is able to debug itself 4. pegin
by inserting adequate calls to our debugging library 5: if num = 0 then
in the C code our X compiler produces. gi | Fact := 1

H H : . else

Our library prowdgs routln_es tha_t can traceapro-' N Fact = num * Fact(um - 1)

gram step by step, inspect its variables, set condi- g. ¢pg:

tional breakpoints, and so on, but it still needs some 10: begin

information about the symbols appearing inan X pro- 11 n =5

gram. For example, it needs to know what variables, % :jN”te"”(”' ! =, Fact(n)
routines or types the user has declared. The best way enc:

to producing this information consists of dumplng the There are two different scopes in this Simp|e pro-
symbol tables our X compiler uses on a file com- gram: the one associated with the main program, and
posed of several “stabs” [1]. Stabs are way to stor-the one associated with routiff@ct . In each scope,

ing symbol tables that was invented by Peter Kesslerthere are several user—defined objects, such as vari-
who worked in the University of California (Berke- gblen or parametenum, and several predefined ob-
ley). We use a simplified version that a compiler canjects, such as routin&riteLn or variableOutput .
easily manage and store in a text file. Our debugging=or the sake of simplicity, we assume that this vari-

library has access to this file so that it can reconstruchple is of a predefined type call@éxt whose struc-
symbol tables at run time, thus having easy access tQre follows:

all the information the compiler had about each sym-
bol. String = array[1..80] of Char;
Text = record
handle: Integer; name: String

2.1 Stab files end

A stab file is a structured text file where a compiler ~ The stab file associated with this example fol-
can store stabs of the following form: lows:

[Example] 2.2 Debugging routines

WriteLn "Rv"

Output "VText" In order to produce a self-debugging program, com-
Text _"Urhandle,i:name,String;" pilers also need to insert calls to our debugging

ﬁt”ng U,i};i}’so;c routines in the code they generate. The way com-
Fact "R pilers should use these routines depend very much
[Fact] on the language they compile, but there are some ba-
num "PiI" sic rules they should follow. For example, routine

debug _init initialises every data structure our lib-

Scope names are written in square brackets, anéary needs, and it should be called before any other
they are followed by the stabs corresponding to eachoutine. It reads the appropriate stab file and rebuilds
symbol appearing in it. In this example, the first stabevery symbol table the compiler used to compile the
corresponds to the predefined routieiteLn :its original program.debug _end shuts down our lib-
class iR, which indicates itis a routine, and its defin- rary and releases all of the resources it acquired when
ition v, which indicates that it does not return any debug _init was called. No debugging routine
value {oid). Its parameters, their definitions and its should be called after calling this routine.
local data do not appear in this stab file because it is
a predefined routine and debuggers do not usually al- ["Routine name | Short description |
low programmers to trace such routines. In any case, debug _init Initialises the library
the compiler might generate appropriate stabs if ne- | debug _open | Opens and stacks a new scope
cessaryFact is a user—defined routine, so it has its | debug close | Closes and unstacks the last opened

own scope where we have defined its parameten . scope . .

. debug _link Links a symbol to its runtime adr
as"Pi" , whereP indicates it is a parameter amd dress
that it is integer. Other supported basic types include | debug _trace | Interprets debugging commands
bytes b), booleans @), reals {), charactersd), i- and traces programs

debug _end Shuts down the library

character stringss¢) and void ¢).

User—defined types are also very important in
most programming languages, and our stabs support N the following subsections, we give a short ex-
them by means of clags. Type Text in previous planation of each routine. There we refer to the fol-
program is a good example because it is a predefinetpwing fragment a compiler might produce for the
record type. We describe records by means of thd>ascal program we have presented previously.
following syntax:

rfield_1,type_1;...;field_m,type_m:; 100: long _Fact(long _num) {
101: long result;
102: debug_open("Fact");

This way, the stab that describd®xt indic- 103: debug_link("num", & num);
ates that it is a record having two fields: one called 104:
handle of type integer, and another calledme of 1822 ie?ug_trace(s(’))”faCt'faS“);

. . . : if (_num ==
type String . This |s_also an user_—deflned type, an 0. debug trace(6, "fact.pas):
80-character array with a dimension whose indexes 1qg: result = 1;
are of type integer. We describe one-dimensional ar- 109: } else {
rays by means of the following syntax: 110: debug_trace(8, "fact.pas”);
111: result = _num*_Fact(_num - 1);
a index _type;low,high;base _type ﬂ; }

114: debug_trace(9, "fact.pas");
Our stab format also supports multi-dimensional 115: /* end */
arrays, enumerations, unions, pointers and other ﬁ? debug closel)
usual type constructors. Due to space limitations, we + debug_close();
. . 118: return result;
cannot list them all, but you can find a complete de- 119: }

scription in [4].

2.2.1 Dealing with scopes 2.2.3 Tracing programs

Each section in a stab file corresponds to a differentdebug trace is the core of our library. This

scope in a source file. Scopes are usually stackeghytine has two parameters that indicate the line and
at runtime. For instance, when a routine calls an-e file the code that follows corresponds to in the ori-
other, the scope associated with the callee is stackeaina| program. The first time it is called, it displays a
on top of the scope associated with the caller. Ourprompt where the user can type any of the commands
library provides two routines to perform this task: ye describe in table 2.2.3. This routine is responsible
debug -open, which opens and stacks a scope, ando jnterpreting the command the user types, and it
debug close , which closes and unstacks the last yqjsts its internal data so that subsequent calls to this
stacked scope. _ _ routine can be handled the right way. For example, if
Compilers - are responsible for using theseiye yser typesun the program is run until its end or
routines the right way depending on the scope rules, preakpoint is reached, thus causing that subsequent
the language they compile define. When a scope iggis to this routine do not prompt the user again.
stacked on top of another scope symbols appearing |, gyr example, we have called this routine sev-
in it override the definitions of symbols with the same eral times. For example, in line 105 we call it with
name in previous scopes. When the debugger needgqment$ and"fact.pas” . This means that the
to know what a symbolis, it begins searching for itin ¢ode that follows is the translation into C code of the
the current scope (the one on top of the scope stackkiatement at line 5 in filéact.pas . Similar calls
If it'vv'as not'found there, the debugger would searchyaye peen inserted in order to trace the statements at
for itin previous scopes. lines 6, 8, and 9. Notice that the statement at line

debug -open takes a parameter that indicates g js 5 fictitious statement, but it helps know when a
what scope it has to open and stack, and itis the namg, tine reaches its end.

we have written in square brackets in the correspond-

ing stab file.debug _close dos not take any argu-

ments because it just unstacks the last opened scope.

In our (_exa_mple, calls to these routines have been in3 Related work

serted in lines 102 and 117. Note thkgtbug _open

is called after declaring local data, but before anyGNU GDB is probably one of the most success-
other routine is called, and thaebug close is ful free debuggers. It is a multi-platform debugger,

called immediately beforeFact returns its result. ~ Which means that it can be run on computers ranging
from low cost PCs to UNIX workstations and main-

frames. It can debug several languages, and all you
need to support a new language or a new platform is
A scope provides information about what each sym-to write a set of files dealing with the specific features
bol is, but they do not have information about where of that language or platform. Nevertheless, in spite
they reside at runtime. Since this information is only of its flexibility, GDB is not suitable for debugging C
available at runtime, our library provides a routine code generated by a compiler because all references
debug _link to link each addressable symbol to its to the original source are lost.
physical location. Very little has been published about GDB intern-
debug link has two arguments callegame als, and one needs to look into its source code in order
andaddr , being the former the name of the object to find out how it works. We have inspected its code
we want to link, and the latter its memory address.and the little documentation that comes with it thor-
In our example, this routine is called in line 103 to oughly, and we have found out that it relies on some
link parametemum to its address. This parameter, routines that allow it to write or read machine re-
variable Output and variablen are the only sym- gisters or memory, so each new port needs to provide
bols our library can address. RoutiRact is alsoan such low-level routines. This implies that only gurus
addressable symbol, but, unfortunately our library iscan really port this debugger. The only thing you
unable to handle it this way, i.e., it is unable to call need to compile our library on a new platform is to
routines dynamically. use an ANSI C compiler. The way to supporting a

2.2.2 Linking addressable symbols

Command | Description
next Executes next statement. It goes into routine calls
step Similar tonext , but steps over routine calls
watch exp Evaluates:zp
whatis exp Shows information aboutzp (type, scope, and so forth)
run Execute the following statements until a breakpoint or the end
of the program is reached
animate num Similar torun , but each sentence is delayedm milliseconds
set expi = exps Assignsexps to exp;
break [f] #n [c] Puts a breakpoint at line in file f. This breakpoint will stop

the program as long as conditiernolds when the line containt
ing it is reached. Several breakpoint may be set on the same

line
unbreak [f] #n [i] Removes thé-th breakpoint at line: in file f
dbreak/ebreak [f] #n [i]] | Disable/Enable thé-th breakpoint at line: in file f

vbreak [f] [#n] Lists breakpoints set at linein file f

line Shows next statement
source [f] Shows source filg

exit Aborts program execution and exits
help Displays a help screen where commands are summarized

Table 1: Commands our debugging library provides

new language consists of writing a new parser for thehave been developed for GDB, being the most im-
expressions that language uses. portant DDD [5]. Our library behaves in a similar
GDB also relies on stabs for storing information way, and we have also developed a graphical front-
about programs, but they are not stored in a separatend that allows the user to debug a program very eas-
file, but in the executable itself. GDB assumes thatily. For the time being, our graphical interface does
the compiler we are using to compile our programsnot allow to display data structures graphically, but
writes stabs into the assembler code it produces. Thae are working hard on this topic.
assembler just puts these stabs into a special section Finally, the most important difference is that
of the executable program. In contrast, our debug-GDB can not deal with fully optimised code, but our
ging library reads this information from a separate, debugging library can debug such programs. This is
portable ASCII file. because it has been incorporated into the generated
Another interesting point is how GDB traces pro- C code, and it traces the logic of our programs, in-
grams. In order to keep track of what statement isstead of optimised machine code that is very difficult
being executed at each moment, we insert approto map into source code.
priate calls todebug _trace into the generated C
code, but GDB makes calls to a UNIX routine called .
ptrace . It allows a debugger to control the execu- 4 EXpe“mental reSUItS
tion of a program, which behaves normally until it N Order to test how our library performs, we have
encounters a signal, at which time it enters a stoppe§@/Tied out a set of experiments with the following
state and the debugger is notified via thait func- ~ Penchmarks:

tion. When the program is in the stopped state, the de-[Bubble sort Quick sort
bugger can examine and modify its core image using| Insertion sort Selection sort
ptrace . Unfortunately, this routine is only avail- | Dichotomic search Sequential search
able on UNIX-like systems, and porting it to other Euclide's algorithm Cramers rule
. y ' P 9 Jordan’s method Euler’s algorithm

systems seems difficult. Newton's method Prime number test

GDB is a command—oriented debugger, which | Matrix product Canonical decomposition
means that it interacts with the user by means of Factorial calculation Determinant calculation
textual commands. Fortunately, its input and output | TIPOnaccls succession | Array merging

. . . Non-linear approximation | Polynomial product
routines can be easily piped so that commands car

come from a graphical front—end. Several front—-ends We have compiled this set of benchmarks us-

Execution Time Executable Size
0,10 7 300 -
0,09 1 K
SO‘OS /\ i 250 WTQ—.—/\O—O—/_\—/_‘\’
e 007 I\ ! 200
¢ 0,06 / \ °
0 0,05 150 == E—— ==
2008 AR A b
9 003 [\ /\ ¥ 100
S 002 Jad /g JAN] L oL AN, N
ool N S VSRV ° 50
172 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Benchmark Benchmark
—— GPC —=—P2C + Our library ‘ —+— GPC —=—P2C + Ourlibrary

Figure 1: Experimental results.

ing GPC, the GNU Pascal compiler, P2C, a popu-library provides a rich set of commands that can help
lar PASCAL to C translator whose output we have the user find errors out, and we have carried out some
modified so that it incorporates debugging informa- experiments that show that our library performs quite
tion. Our comparison concentrated on the size of thevell on low cost computers. Moreover, it is portable
executable file with and without debugging informa- and it is able to debug fully optimised C code, which
tion, and on how many CPU time they consume. Theis a nice feature other debuggers do not support.
experiments were conducted on a low cost Pentium _ For the time being, we do not support object—
machine running at 200MHz. It was equipped with ﬁrlented programming languages, but we are working
] ard on this topic.
64 Mb of memory, Linux RedHat 5.2 Kernel 2.0.36,
GPC 2.9.61, and P2C 1.20.
Figure 4 shows the time our benchmarks took toR€ferences

execute When they were complleq using GPC and[l] P. Kessler. The “stabs” Debug Format Available
P2C. Our times are slightly worse in every case be- = on the Internet at minastirith.cip2b.tu-
cause callinglebug _trace produces a slight over- harburg.de/info/html/stabs _toc.html
head. Anyway, this overhead is not significant be-[2] R.M. Stallman.Debugging with DGBFree Software Fund-
cause the executables that incorporate our library run ation. 1998
only 0.02 seconds slower in average, with a standards] J. Gilmore. GDB Internals Available on the Inter-
deviation of 0.02 seconds. This shows that the over- et atwww.cs.utah.edu/csinfo/texinfo/gdb/
head our library introduces is negligible. We have ~ 9dbint -toc.html
also analysed the size of the executable program&‘] J.L. Arjona, J.M. Prieto, a_nd R. Corchueldsymbolic Port-

: . able Debugger for Compilers that Generate C codlech-
when we mgorporate our. “b_r?ry' The amount of code nical Report. Depto. de Lenguajes y Sistemas Infiroos.
we need to insert is not significant, as well. Infactthe yniversidad de Sevilla
executables that incorporate our library are 95.45 Kiyg) o zeller et al. The Data Display DebuggerAvail-
smaller than their counterparts compiled with GPC, able on the Internet at http://www.cs.tu-
with a standard deviation of 22.46 Kb. Therefore, our bs.de/softech/ddd
library performs well-enough to be used in practical [6] G.E. Andrews and R.A. OlsonThe SR Programming

applications. Language The Benjamin—Cummings Publishing Company.
1993
. [7] S. Feurstein et alOracle PL/SQL ProgrammingO’Reilly
5 Conclusions and future work and Associates. 1997

We have presented a library that allow compilers tha{g] B. Meyer.Eiffel: The LanguagePrentice—Hall. 1992
generate C code as output to incorporate debuggings] small Eiffel Home PageAvailable on the Internet at
information that allows to debug such programs. We www.loria.fr/projets/SmallEiffel

have added a front—end graphical interface that al{10] Ingres II Home Page Available the Internet at
lows programmers for easy debugging sessions. The www.cai.com/products/ingres.htm

