
A Symbolic PortableDebugger for Compilers
that GenerateC Code

JOSÉ M. PRIETO, JOSÉ L. ARJONA, RAFAEL CORCHUELO, MIGUEL TORO, AND DAVI D RUIZ

Departamento deLenguajes y Sistemas Informáticos
Facultad de Informáticay Estad́ıstica, Universidad deSevilla

Avenidade laReinaMercedes s/n, 41.012, Sevilla
ESPAÑA — SPAIN

Abstract: Most compilers translate high-level programming languages into machine code, but, if we are in-
terested in portability, this might not be a good idea because machine code is not portable among different
platforms. This is the reason why many compilers do not produce machine code as output, but ANSI C code.
The problem is that the code these compilers produce is not debugable because it does not include any refer-
ences to the symbols appearing in the original program.

We have investigated some techniques that allow us to bridge this gap. As a result, we have produced
a library compilers that generate C code can easily incorporate in order to generate self–debugging programs.
Thispaper aimstoexplain itsmain featuresand also reportssomeexperimental results that show that it performs
quite well. IMACS/IEEE CSCC'99 Proceedings, Pages:3501-3506

Key words: symbolic debuggers, compilers that generate C code as output, portability, GDB.

1 Int roduction

Compilers usually generate machine code as output,
but, in general, this is not a good idea if we are in-
terested in portability because if we want to port our
compiler to other platforms, we need to spend a lot
of time to rewriteour codegenerator. In addition, the
effort to maintain different versions of our compiler
increases. On theother hand, C hasbecomeadefacto
standard available inmost platforms. It ishighly port-
able because most compilers are ANSI compliant,
and there are commercial or free compilers that gen-
eratecodeso optimised that itsperformance issome-
times comparable to the performance of a machine
code program written by a human programmer. This
isthereason why many compilersdonot producema-
chine code asoutput, but ANSI C code. Lately, these
compilers are sprouting out at an increasing pace. A
set of good examples include ISE Eiffel [8], Small
Eiffel [9], SR [6], Ingres 4GL [10] or PL/SQL [7],
and the list increases every day because this idea is
very attractive.

Nevertheless, programmers rarely write correct

programs, and they usually need to use debuggers to
find out the reason why their programs do not work
properly under certain circumstances. At present,
there are some very good commercial debuggers, as
well as wonderful free debuggers. GDB [2], the de-
bugger by GNU, stands out because it is available in
most platforms, and it incorporates many advanced
debugging facilities. Unfortunately, noneof thesede-
buggers is suitable to debug the C code generated by
the compilers we have just mentioned. The reason
is that if we used such a debugger on this code, we
would trace a C program instead of the original pro-
gram written in Eiffel, Ingres 4GL or PL/SQL.

We have investigated some techniques that allow
usto bridge thisgap, and theresult wehaveproduced
is a library compilers that generate C code can eas-
ily incorporate in order to generate self–debugging
programs. This way a compiler can produce portable
ANSI Ccodeasoutput, which can befully optimised,
while keeping it debugable. This is a nice feature of
our debugger others do not support.

This paper is organised as follows: section 2

gives some general information about debugger con-
struction, and describes our library; section 3 com-
pares our solution with GNU GDB, and section 4
reports some experimental results; finally, section 5
shows our conclusions and the work we are planning
on doing.

2 Making self–debugging programs

We assume that we are interested in a language called
“X”, and that we have a compiler that translates X
code into ANSI C code. Thus, after compiling an
X program, we need to use a C compiler in order to
translate generated C code into a set of object mod-
ules that a linker can combine with external libraries
to produce an executable program. Our idea consists
of making this executable program self–debugging,
i.e., instead of implementing the debugger as a sep-
arate tool able to trace another program, we have de-
cided to incorporate the debugger into the generated
C code so that the final executable can debug itself.
This makes our solution very portable because we
do not need to rely on specific, platform–dependent
ways to controlling the execution of another program.
On the contrary, the executable is able to debug itself
by inserting adequate calls to our debugging library
in the C code our X compiler produces.

Our library provides routines that can trace a pro-
gram step by step, inspect its variables, set condi-
tional breakpoints, and so on, but it still needs some
information about the symbols appearing in an X pro-
gram. For example, it needs to know what variables,
routines or types the user has declared. The best way
to producing this information consists of dumping the
symbol tables our X compiler uses on a file com-
posed of several “stabs” [1]. Stabs are way to stor-
ing symbol tables that was invented by Peter Kessler,
who worked in the University of California (Berke-
ley). We use a simplified version that a compiler can
easily manage and store in a text file. Our debugging
library has access to this file so that it can reconstruct
symbol tables at run time, thus having easy access to
all the information the compiler had about each sym-
bol.

2.1 Stab files

A stab file is a structured text file where a compiler
can store stabs of the following form:

name "class description"

Here,name is the name a programmer has given
to an object in a program,class is a character that
describes what it is (a variable, a routine, a constant,
a type, and so forth), anddescription is a string
that describes its features (for example the type of a
variable, the number of dimensions of an array, the
fields a record has, and so forth).

Stab files are divided into several sections, each
of them describing the set of symbols that appear in a
syntactic scope. Languages usually provide a way to
modularising programs. For instance, typical imper-
ative languages provide subroutines, object–oriented
languages provide classes, and other languages such
as Modula provide modules that encapsulate imple-
mentation details. Each module can be viewed as a
different scope with its own naming space, and the
structure of a stab file closely resembles this modules,
the difference being that scopes cannot be nested in
a stab file. Consider, for example, the following pro-
gram written in Pascal:

1: program Example(Output);
2: var n: Integer;
3: function Fact(num: Integer): Integer;
4: begin
5: if num = 0 then
6: Fact := 1
7: else
8: Fact := num * Fact(num - 1)
9: end;

10: begin
11: n := 5;
12: WriteLn(n, ’! =’, Fact(n))
13: end.

There are two different scopes in this simple pro-
gram: the one associated with the main program, and
the one associated with routineFact . In each scope,
there are several user–defined objects, such as vari-
ablen or parameternum, and several predefined ob-
jects, such as routineWriteLn or variableOutput .
For the sake of simplicity, we assume that this vari-
able is of a predefined type calledText whose struc-
ture follows:

String = array[1..80] of Char;
Text = record

handle: Integer; name: String
end

The stab file associated with this example fol-
lows:

[Example]
WriteLn "Rv"
Output "VText"
Text "Ur:handle,i:name,String;"
String "Uai;1,80;c"
n "Vi"
Fact "Ri"
[Fact]
num "Pi"

Scope names are written in square brackets, and
they are followed by the stabs corresponding to each
symbol appearing in it. In this example, the first stab
corresponds to the predefined routineWriteLn : its
class isR, which indicates it is a routine, and its defin-
ition v , which indicates that it does not return any
value (void). Its parameters, their definitions and its
local data do not appear in this stab file because it is
a predefined routine and debuggers do not usually al-
low programmers to trace such routines. In any case,
the compiler might generate appropriate stabs if ne-
cessary.Fact is a user–defined routine, so it has its
own scope where we have defined its parameternum
as "Pi" , whereP indicates it is a parameter andi
that it is integer. Other supported basic types include
bytes (b), booleans (o), reals (f), characters (c), i-
character strings (s i) and void (v).

User–defined types are also very important in
most programming languages, and our stabs support
them by means of classU. Type Text in previous
program is a good example because it is a predefined
record type. We describe records by means of the
following syntax:

r:field_1,type_1;...;field_m,type_m;

This way, the stab that describesText indic-
ates that it is a record having two fields: one called
handle of type integer, and another callednameof
type String . This is also an user–defined type, an
80-character array with a dimension whose indexes
are of type integer. We describe one-dimensional ar-
rays by means of the following syntax:

a index type;low,high;base type

Our stab format also supports multi–dimensional
arrays, enumerations, unions, pointers and other
usual type constructors. Due to space limitations, we
cannot list them all, but you can find a complete de-
scription in [4].

2.2 Debugging routines

In order to produce a self–debugging program, com-
pilers also need to insert calls to our debugging
routines in the code they generate. The way com-
pilers should use these routines depend very much
on the language they compile, but there are some ba-
sic rules they should follow. For example, routine
debug init initialises every data structure our lib-
rary needs, and it should be called before any other
routine. It reads the appropriate stab file and rebuilds
every symbol table the compiler used to compile the
original program.debug end shuts down our lib-
rary and releases all of the resources it acquired when
debug init was called. No debugging routine
should be called after calling this routine.

Routine name Short description

debug init Initialises the library
debug open Opens and stacks a new scope

debug close Closes and unstacks the last opened
scope

debug link Links a symbol to its runtime ad-
dress

debug trace Interprets debugging commands
and traces programs

debug end Shuts down the library

In the following subsections, we give a short ex-
planation of each routine. There we refer to the fol-
lowing fragment a compiler might produce for the
Pascal program we have presented previously.

...
100: long _Fact(long _num) f
101: long result;
102: debug_open("Fact");
103: debug_link("num", &_num);
104:
105: debug_trace(5, "fact.pas");
106: if (_num == 0) f
107: debug_trace(6, "fact.pas");
108: result = 1;
109: g else f
110: debug_trace(8, "fact.pas");
111: result = _num*_Fact(_num - 1);
112: g
113:
114: debug_trace(9, "fact.pas");
115: /* end */
116:
117: debug_close();
118: return result;
119: g
...

2.2.1 Dealing with scopes

Each section in a stab file corresponds to a different
scope in a source file. Scopes are usually stacked
at runtime. For instance, when a routine calls an-
other, the scope associated with the callee is stacked
on top of the scope associated with the caller. Our
library provides two routines to perform this task:
debug open , which opens and stacks a scope, and
debug close , which closes and unstacks the last
stacked scope.

Compilers are responsible for using these
routines the right way depending on the scope rules
the language they compile define. When a scope is
stacked on top of another scope symbols appearing
in it override the definitions of symbols with the same
name in previous scopes. When the debugger needs
to know what a symbol is, it begins searching for it in
the current scope (the one on top of the scope stack).
If it was not found there, the debugger would search
for it in previous scopes.

debug open takes a parameter that indicates
what scope it has to open and stack, and it is the name
we have written in square brackets in the correspond-
ing stab file.debug close dos not take any argu-
ments because it just unstacks the last opened scope.
In our example, calls to these routines have been in-
serted in lines 102 and 117. Note thatdebug open
is called after declaring local data, but before any
other routine is called, and thatdebug close is
called immediately beforeFact returns its result.

2.2.2 Linking addressable symbols

A scope provides information about what each sym-
bol is, but they do not have information about where
they reside at runtime. Since this information is only
available at runtime, our library provides a routine
debug link to link each addressable symbol to its
physical location.

debug link has two arguments calledname
andaddr , being the former the name of the object
we want to link, and the latter its memory address.
In our example, this routine is called in line 103 to
link parameternum to its address. This parameter,
variableOutput and variablen are the only sym-
bols our library can address. RoutineFact is also an
addressable symbol, but, unfortunately our library is
unable to handle it this way, i.e., it is unable to call
routines dynamically.

2.2.3 Tracing programs

debug trace is the core of our library. This
routine has two parameters that indicate the line and
the file the code that follows corresponds to in the ori-
ginal program. The first time it is called, it displays a
prompt where the user can type any of the commands
we describe in table 2.2.3. This routine is responsible
for interpreting the command the user types, and it
adjusts its internal data so that subsequent calls to this
routine can be handled the right way. For example, if
the user typesrun the program is run until its end or
a breakpoint is reached, thus causing that subsequent
calls to this routine do not prompt the user again.

In our example, we have called this routine sev-
eral times. For example, in line 105 we call it with
arguments5 and"fact.pas" . This means that the
code that follows is the translation into C code of the
statement at line 5 in filefact.pas . Similar calls
have been inserted in order to trace the statements at
lines 6, 8, and 9. Notice that the statement at line
9 is a fictitious statement, but it helps know when a
routine reaches its end.

3 Related work
GNU GDB is probably one of the most success-
ful free debuggers. It is a multi-platform debugger,
which means that it can be run on computers ranging
from low cost PCs to UNIX workstations and main-
frames. It can debug several languages, and all you
need to support a new language or a new platform is
to write a set of files dealing with the specific features
of that language or platform. Nevertheless, in spite
of its flexibility, GDB is not suitable for debugging C
code generated by a compiler because all references
to the original source are lost.

Very little has been published about GDB intern-
als, and one needs to look into its source code in order
to find out how it works. We have inspected its code
and the little documentation that comes with it thor-
oughly, and we have found out that it relies on some
routines that allow it to write or read machine re-
gisters or memory, so each new port needs to provide
such low–level routines. This implies that only gurus
can really port this debugger. The only thing you
need to compile our library on a new platform is to
use an ANSI C compiler. The way to supporting a

Command Description

next Executes next statement. It goes into routine calls
step Similar tonext , but steps over routine calls

watch exp Evaluatesexp
whatis exp Shows information aboutexp (type, scope, and so forth)

run Execute the following statements until a breakpoint or the end
of the program is reached

animate num Similar torun , but each sentence is delayednum milliseconds
set exp1 = exp2 Assignsexp2 to exp1
break [f] #n [c] Puts a breakpoint at linen in file f . This breakpoint will stop

the program as long as conditionc holds when the line contain-
ing it is reached. Several breakpoint may be set on the same
line

unbreak [f] #n [i] Removes thei–th breakpoint at linen in file f

dbreak/ebreak [f] #n [i] Disable/Enable thei–th breakpoint at linen in file f

vbreak [f] [#n] Lists breakpoints set at linen in file f

line Shows next statement
source [f] Shows source filef

exit Aborts program execution and exits
help Displays a help screen where commands are summarized

Table 1: Commands our debugging library provides

new language consists of writing a new parser for the
expressions that language uses.

GDB also relies on stabs for storing information
about programs, but they are not stored in a separate
file, but in the executable itself. GDB assumes that
the compiler we are using to compile our programs
writes stabs into the assembler code it produces. The
assembler just puts these stabs into a special section
of the executable program. In contrast, our debug-
ging library reads this information from a separate,
portable ASCII file.

Another interesting point is how GDB traces pro-
grams. In order to keep track of what statement is
being executed at each moment, we insert appro-
priate calls todebug trace into the generated C
code, but GDB makes calls to a UNIX routine called
ptrace . It allows a debugger to control the execu-
tion of a program, which behaves normally until it
encounters a signal, at which time it enters a stopped
state and the debugger is notified via thewait func-
tion. When the program is in the stopped state, the de-
bugger can examine and modify its core image using
ptrace . Unfortunately, this routine is only avail-
able on UNIX–like systems, and porting it to other
systems seems difficult.

GDB is a command–oriented debugger, which
means that it interacts with the user by means of
textual commands. Fortunately, its input and output
routines can be easily piped so that commands can
come from a graphical front–end. Several front–ends

have been developed for GDB, being the most im-
portant DDD [5]. Our library behaves in a similar
way, and we have also developed a graphical front-
end that allows the user to debug a program very eas-
ily. For the time being, our graphical interface does
not allow to display data structures graphically, but
we are working hard on this topic.

Finally, the most important difference is that
GDB can not deal with fully optimised code, but our
debugging library can debug such programs. This is
because it has been incorporated into the generated
C code, and it traces the logic of our programs, in-
stead of optimised machine code that is very difficult
to map into source code.

4 Experimental results
In order to test how our library performs, we have
carried out a set of experiments with the following
benchmarks:

Bubble sort Quick sort
Insertion sort Selection sort
Dichotomic search Sequential search
Euclide’s algorithm Cramer’s rule
Jordan’s method Euler’s algorithm
Newton’s method Prime number test
Matrix product Canonical decomposition
Factorial calculation Determinant calculation
Fibonacci’s succession Array merging
Non–linear approximation Polynomial product

We have compiled this set of benchmarks us-

Figure 1: Experimental results.

ing GPC, the GNU Pascal compiler, P2C, a popu-
lar PASCAL to C translator whose output we have
modified so that it incorporates debugging informa-
tion. Our comparison concentrated on the size of the
executable file with and without debugging informa-
tion, and on how many CPU time they consume. The
experiments were conducted on a low cost Pentium
machine running at 200MHz. It was equipped with
64 Mb of memory, Linux RedHat 5.2 Kernel 2.0.36,
GPC 2.9.61, and P2C 1.20.

Figure 4 shows the time our benchmarks took to
execute when they were compiled using GPC and
P2C. Our times are slightly worse in every case be-
cause callingdebug trace produces a slight over-
head. Anyway, this overhead is not significant be-
cause the executables that incorporate our library run
only 0.02 seconds slower in average, with a standard
deviation of 0.02 seconds. This shows that the over-
head our library introduces is negligible. We have
also analysed the size of the executable programs
when we incorporate our library. The amount of code
we need to insert is not significant, as well. In fact the
executables that incorporate our library are 95.45 Kb
smaller than their counterparts compiled with GPC,
with a standard deviation of 22.46 Kb. Therefore, our
library performs well–enough to be used in practical
applications.

5 Conclusions and future work
We have presented a library that allow compilers that
generate C code as output to incorporate debugging
information that allows to debug such programs. We
have added a front–end graphical interface that al-
lows programmers for easy debugging sessions. The

library provides a rich set of commands that can help
the user find errors out, and we have carried out some
experiments that show that our library performs quite
well on low cost computers. Moreover, it is portable
and it is able to debug fully optimised C code, which
is a nice feature other debuggers do not support.

For the time being, we do not support object–
oriented programming languages, but we are working
hard on this topic.

References
[1] P. Kessler. The “stabs” Debug Format. Available

on the Internet at minastirith.cip2b.tu-
harburg.de/info/html/stabs toc.html

[2] R.M. Stallman.Debugging with DGB. Free Software Fund-
ation. 1998

[3] J. Gilmore. GDB Internals. Available on the Inter-
net at www.cs.utah.edu/csinfo/texinfo/gdb/
gdbint toc.html

[4] J.L. Arjona, J.M. Prieto, and R. Corchuelo.A symbolic Port-
able Debugger for Compilers that Generate C code. Tech-
nical Report. Depto. de Lenguajes y Sistemas Inform´aticos.
Universidad de Sevilla

[5] A. Zeller et al. The Data Display Debugger. Avail-
able on the Internet at http://www.cs.tu-
bs.de/softech/ddd

[6] G.E. Andrews and R.A. Olson.The SR Programming
Language. The Benjamin–Cummings Publishing Company.
1993

[7] S. Feurstein et al.Oracle PL/SQL Programming. O’Reilly
and Associates. 1997

[8] B. Meyer.Eiffel: The Language. Prentice–Hall. 1992

[9] Small Eiffel Home Page. Available on the Internet at
www.loria.fr/projets/SmallEiffel

[10] Ingres II Home Page. Available the Internet at
www.cai.com/products/ingres.htm

