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Abstract: This paper addresses the main steps in model-based control: the identification of the model and the design of the
controller. A series of recent research results is aggregated to present a complete approach. A fuzzy model of the system
is identified from sampled data using supervised fuzzy clustering for rule extraction. This model is applied in model
predictive control (MPC) of the process. The non-convex optimization problem introduced by a nonlinear plant model is
solved by discretizing the control space and apply discrete search techniques. The trade-off between computational time
and performance that follows from the discretization is addressed by using fuzzy rule-based optimization to adapt the
discrete control actions. The global fuzzy model-based control approach is applied to pressure control of a fermentation
tank.
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1 Introduction 3. Obtaining a compact TS modeb apply supervised

The classical control design of a model-based control sys-  fuzzy clustering to sampled data [3].

tem has several steps, starting with the modeling of the pro-

cess under control, followed by the choice of the design 4. Solve the non-convex optimization in MRE apply

specifications and their combination in performance crite- discrete MPC with branch-and-bound [4].

ria, and finally designing the controller. The choice of per-

formance criteria and the design of the controller can be 5 Trade-off computational effort / performance in dis-

joined in several control schemes such as model predictive  crete MPG- use adaptive control alternatives[5].

control (MPC). Thus, two main steps can be considered:

modeling and design of the controller. For complex, non-  |n the following, Section 2 describes fuzzy modeling

linear processes, the interest focus on data-driven modelingbased on supervised fuzzy clustering. The approach pre-

In MPC, the non-linearity of the model and the presence sented in [3] is extended to an adaptive distance clustering

of constraints lead to a non-convex optimization problem. algorithm. A brief description of discrete MPC applied to

There is thus a need for both accurate and compact (comnonlinear processes is presented in Section 3 together with

putationally fast) models as well as efficient optimization the branch-and-bound (B&B) optimization. The computa-

routines in the real-time application of MPC to general non- tional cost / performance trade-off in discrete MPC is dealt

linear processes. with by using of a low number addaptive control alterna-
This paper addresses these issues and presents a corlves and Section 4 describes adaptive control actions based

plete, data-driven approach based on fuzzy techniques, apon fuzzy rules. The presented model and control tools are

plicable to (small) real-world processes. Recent research byapplied to the pressure control of a fermentation tank in Sec-

the authors is aggregated and presented in this paper to solvon 5. Finally, Section 6 concludes the paper.

the various problems encountered in model-based control:

1. Good performance in control of real-world processes .
— apply model predictive control [1]. 2 Fuzzy Modeling

A data-driven fuzzy modeling approach is described that

provides the user with compact and accurate rule-based

models. The approach can favorably be combined with the

*This work was supported by the the Research Council of Norway.  complexity reduction methods presented in [6].

2. Modeling of a nonlinear process» use the Takagi-
Sugeno (TS) type fuzzy model [2].




2.1 The Takagi-Sugeno fuzzy model

the input space, and a function assigning a degree of mem-

Takagi_Sugeno (TS) [2] fuzzy models have rules where the berShip of the input to the set depending on its distance to

consequents are linear functions of the inputs:

Ri: IFzisA; THEN¢ = al z+b;, i=1,...,M. (1)
Herex € R" is the input vector and; € R is the output
(consequent)R; denotes théth rule whos antecedent fuzzy
set A; is defined by a multivariable membership function
pa; () : R = [0,1].

The total output of the model is computed by aggregating
the individual rules contributions

M
y(k) = Zukici &)
i=1

whereuy,; is the normalized degree of fulfillment of the an-
tecedent clause of rulg; for an inputz;,

HA; (mk)

M
j=1 HA; (mk)
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2.2 Data driven identification

GivenNN input-output data pairkey, yi. } wherex, is then
dimensional input vectdir i, ag, - . -, ni]T andyy is to
be approximated by the model given. We can write (2)
as a linear regression model

y=UC+e (4)
wherey = [y1,%2,...,yn]T are the measured outputs,
C = [c1,ca,...,cu]T are the consequents of thé rules,
ande contains the approximation errors. The maflix=
[ug,us,...,upm] € RY*M| contains the degrees of fulfill-
mentu; = [u1;,us;,...,un;]? of all the M rules for the
N inputszy,.

The identification of (1) is a two step approach. First
the fuzzy antecedents; are determined by means of fuzzy
clustering. Then, when the matriX in (4) is known, the
rule consequent§’ are determined by least-squares param-
eter estimation.

2.2.1 Identification by fuzzy clustering

To identify the model (1), the regression matix’
[1,...,zn] and an output vectay” = [y1,...,yn] are

constructed from the available data. Fuzzy clustering is ap-

plied to the product-space & andy to identify regions

where the systems behaviour is approximated by local linear

models of the form (1). Given the dafd = [X, y] and an
estimated number of clustefd, we apply the Gustafson-
Kessel (GK) [7] algorithm to compute the fuzzy partition
matrix U whoseikth elementu;;, € [0, 1] is the member-
ship degree of the data objegt € Z, in clusteri. Thus, the
rows of U contain point-wise represented multi-dimensional
fuzzy setsd;, that are defined by the cluster prototypen

the prototype (see the appendix):

Ai(z) = p(vi, x) . (5)

The most important issue when applying clustering is the
determination of the relevant number of clusters (rules). In
[3] it was proposed to use an orthogonal-least squares rule
reduction algorithm [8] to supervise the clustering process.
Using the Gram-Schmidt orthogonalization, the partition
matrix U, corresponding also t¥ in (4), is decomposed
into U = QR, whereQ € RN*N is a matrix with orthog-
onal columngy;, andR € RM*M is upper triangular with
unity diagonal elements. The error reduction ratio dug;to
can be defined as [8]

lerr]; = (gjul u;)/(y"y), 1<ji<M, (6

whereg; is thejthe entry ofg = RC € RM. In [8] this

ratio was used to seek a subset of important regressors in a
forward-regression manner. For fuzzy modeling, this corre-
sponds to a subset of important fuzzy rules, and in [3] arule
contribution factor was derived based on (6) and applied to
clustering. When clustering is close to convergence, given
the partition matrixU, thej = 1,..., Mg most important
columns (clusters) ot/ are selected until the least impor-
tant of the selected clusters has a relative contribution less
than a factop of the previously selected clusters:

s—1

ferr]; — 315
S
Only the Mg selected clusters are retained for further opti-
mization by the cluster algorithm.
We combine this algorithm with the GK algorithm (see
the appendix), that unlike the approach in [3], applies an

adaptive distance measure to detect clusters of different
shapes and orientation in the same data set.

s

M.
2 =1

[err];

<p,pel01] (7)

lerr];

2.2.2 Estimating the rule consequents

The parameters of the consequents- a? = + b; are ob-

tained as a least-square estimate. Xgtdenote the matrix
[X;1], I'; is a diagonal matrix in R*™ having the normal-
ized degree of fulfillment:; as itskth diagonal element.
Further, denot&’ the matrix in RV ™% composed of ma-
tricesI'; andXe

X' = [(T1Xe); (T2Xe); - -5 (TmXe)] - (8)
Denoted’ the vector in R'(™+1) given by
T

0 = [91T;92T;---;9§4] 9)

wheref! = [aT;b;] for1 < i < M. The resulting least-
squares problerg = X'8’' + e, corresponding to (4), has
the solution

o' = [(X)TX] " (X)Ty. (10)



From eq. (9), the parameteais andb; are obtained by: in a non-convex optimization problem. In this case, both
the Sequential Quadratic Programmif{QP) method [10]

a; =010 0,007, bi=[0n1], (11) and thesimplex method11], which are both iterative op-
timization techniques, can be considered. However, these
whereg = (i — 1)(n + 1). methods have generally high computational costs and often
converge to local minima. By discretizing the control ac-
3 Model Predictive Control tions, the efficient branch-and-bound algorithm can be used

to search the discrete space for the best solution. This has
proven to give better results than iterative optimization tech-
niques [4].

Predictive control is a general methodology for solving con-
trol problems in the time domain having one common fea-
ture; the controller is based on the prediction of the future
system behavior by using a process model. MPC is based on L

the following basic concepts: 1) Use of an available (non- Branch-and-Bound Optimization S
linear) model to predict the process outputs at future dis- N discrete MPC, B&B can be used for the optimization
crete time instants over a prediction horizon. 2) Computa- Problem that must be solved at each time instari B&B

tion of a sequence of future control actions using the model &/90rithm can be characterized by the following two rules:
of the system by minimizing a certain objective function, 1) Branching rule- defines how to divide a problem into
3) Receding horizon principle; at each sampling instant the SUP-Problems; iiBounding rule- establishes lower and up-
optimization process is repeated with new measurementsP€r Pounds in the optimal solution of a sub-problem, where
and the first control action obtained is applied to the pro- these boundg allow for the ellmlnat_lon of sub-problems that
cess. Because of the explicit use of a process model and thd© Not constitute an optimal solution. Usually, these two
optimization approach, MPC can handle multivariable pro- Pasic rules are applied recursively in B&B methods.
cesses with nonlinearities, non-minimum phase behavior or 1€ B&B method can only be applied to predictive con-
long time delays, and can efficiently deal with constraints. trol when the control actions are discretized. The model of

The future plant outputs for a determingediction hori- the sys}em under C(Zntrol predict th.e fgture outputs of the
zon H, are predicted at each time instdntising a model ~ SyStemy(k +1),....§(k + H,), and is given by:
of the process. The predicted output valyés + i), i = i(k 4 ) = ki 1).u(kti1 1 %
1,..., H, depend on the states of process at the currenttimey( i) = f@k+i=1),u(k+i—1), i e (1%')

k (given, for instance, by the past input and outputs) and 0N ot the possible inputs of the system be discretized in

the future control signala(k + j), j = 1,..., He, Where  ,,qqipie control actions. Let also the discretized control ac-
H is thecontrol horizon The control signals change only jong pe denoted;. Thus, at each step the control actions
inside the control horizon, remaining constant afterwards,u(k +i—1) €0, aregivenby

ie,u(k+j)=ulk+H.—-1),forj=H....,H,— 1.
The sequence of future control signals is obtained by opti- Q=A{w;lj =1,2,...,K}. (14)
mizing an objective (cost) function which describes the con-

trol goals. The objective function is usually of the following !N Predictive control, the problem to be solved is normally
quadratic form: represented by an objective function minimizing the pre-

dicted error and the control effort. This optimization prob-
Hp lem is successively decomposed by the branching rule into
J(u) = Z(r(lﬁ—i)—g}(k+i))2+,8(Au(k+i—1))2, (12) smaller sub-problems. At time instaht+ 7 the cumulative
i=1 cost of a certain path followed so far, and leading to the state

k + i) and outputj(k + i) is given b
or some small modifications of it, whegeare the predicted 2k +i) pup(k +i)is g y

process outputs, is the reference trajectory, anxt, is the ) i

change in the control signal weighted by the paramgter @ =~ {(T(/H-f) —§(k+0)* + B(Au(k+-1))|

The first term of (12) accounts for the minimization of the =1

output errors, the second term represents the minimization . . (15)
wherei = 1,..., Hp, denotes the level corresponding to the

of the control effort, and3 determine the weighting be- " . i ) -
tween the two in the global criterion [9]. The process inputs time stepk +i. A parnculag)branciy at leveli is created
and outputs, as well as state variables, can be subjected ghen the cumulative cost plus alower boundon the
constraints, which are then incorporated in the optimization cost from the level to the terminal leveH,, for the branch

problem. J, denoted/Jr,;, is lower than arupper boundof the total
The performance of MPC depends largely on the used oSt denotedy:
process model. The model must be able to accurately pre- JO 4 T, < Ju. (16)

dict the future process outputs, and at the same time be com-
putationally attractive to meet real-time demands. Using Let the total number of branches verifying this rule at level
nonlinear fuzzy models, as described in Section 2, resultsi be given byN. In order to increase the efficiency of the
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B&B method, is required that this number should be as low
as possible, i.eV <« K. Note that no branching takes place
fori > H. — 1 (beyond the control horizon), i.e., the last
control actionu(k + H. — 1) is applied successively to the
model, until H, is reached. In order to achievé <« K,

the upper bound should be as low as possible (close to the
optimal solution) and the lower bound as large as possible,
in order to decrease the number of new brandties
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The B&B algorithm applied to MPC always finds the Change in output
global discrete optimal solution, guaranteeing a good con-
trol performance when the number of control actidtiss Figure 1: Fuzzy sets used in rule base.

sufficiently large. Moreover, B&B does not need any ini-

tial guess, and hence its performance cannot be negatively o o ) )
influenced by a poor initialization, as in the case of itera- IV = 1, giving a minimum set of possible actions

tive optimization methods, and the B&B method implicitly _ + _

deals with constraints. In fact, the presence of constraints Q= (k) - {ug /4, 0, ug 4} (19)
improve theT e_fficigncy of boupding, restricting the search  The scaling factor (k) is determined at each instanby
space by eliminating non-feasible sub-problems.  gimple fuzzy rules concerning the predicted efdr+ H,,)

Two serious drawbacks of B&B are the exponential in- g4 the change in the outptiy (k) = y(k) —y(k—1). The
crease of the computational time with the control horizon yjes are derived from simple heuristics. For instance, when
and the number of alternatives, and the discretization of theAy(k) is small, andé(k + H,) is also small, the system
possible control actions. This discretization can cause chatys cjose to a steady-state situation. The set of control alter-
tering, overshoots and slow step-responses. A solution tonatives should then be scaled down to allow finer control
this problem is to adapt the control alternatives to better suit 5¢tions i.ey(k) — 0, in order to approach zero steady-

the present situation in the system [5]. state error without introducing oscillations around the set-
point. When the predicted error is high, bigger corrective

The exact definition of the rules is not critical, and the

In order to solve the drawbacks of the B&B optimization . . .
described in the previous section, adaptive set of discretedomaIns of the two variablesk + Hy) /y(k) (relative pre-

inputs can be used. Lelk) € U represen the conrol ac- Ut S SR L e S R
tion at time instancé, whereU = [U~, U] is the domain P y y P g

of the manipulated variable. Let also the upper and lower Negative, ZeroandPositive as shown in Fig. 1. By combi-

. : . . ___nation, this gives a simple fuzzy rule base of nine rules, de-
bounds of the possible change in the control signal at time L . . .
+ _ . . termining the scaling factoy(k), as given in Table 1. The
k,u;; andu, respectively, be given by

+ _ 7+ - _ -
uy, =U" —u(k—1),u, =U" —u(k—-1).
Table 1: Fuzzy scaling rules for(k)

The valuesy;” andu;, are thus the mz_ixi_mum_chgnges al- ek + Hy) Jy(k) Ay(k)/y(k) (k)
lowed for the control action, when this is being increased Neg Neg 1.0
or decreased, respectively. The control action at fimei, Neg Zero 1.0
i=0,...,H. — 1is given by Neg Pos 0.2
N ) ) Zero Neg 0.7

u(k i) =ulk+i—1)+wk),  (@17) Zoro Zeo 0
wherew; (k) € €y is the change in the control action se- Zero Pos O';

lected by the B&B optimization algorithm from the set of Pos Neg 0.
alternatives);. An adaptive sefl;, is created by using a Pos Zero 1.0
scaling factory(k) € [0, 1], which depends on the activation Pos Pos 1.0

of simple fuzzy rules, applied to a dynamic set of actions as ] )
opposed to the static s@tin (14): rule base is a zero order Takagi-Sugeno model [2], and the

resulting control surface for the scaling factdk) is shown
Q=) - {Nu, 0Nu, [I=1,2,...,N}, (18)  inFig.2.

To summarize, equation (18) represents a dynamic set of
where the valueg; can be chosen such that the control al- alternative changes of the control action that can be applied
ternatives are linear or logarithmically distributed. In the at time instancé. The control alternatives are determined
application in Section 5, we simply use = 1/(4!), with by the available control space at this time, as defined in (17).



Valve (ul)

air flow out

Pressure (y)

Scale factor

—— Water

air flow in
. 0.1 0.2 Predicted error =
Change in output : : Valve (u2)

Figure 2: Value ofy(k) as function of predicted erréfk +
H,) and change in outpuly(k).

Further, the alternatives are scaled by the fag{@), which

is determined by the fuzzy rule base in Table 1 considering
the state of the system at tinke Finally, constraints on the
control signal concerning, e.g., the rate of change can be
directly implemented when selecting the paramelers

1. . . . . :
]O 200 400 _ 600 = 800 1000 1200
Time [s]

5 Application example

The described modeling and control scheme is applied in Figure 3:Top.: Laboratory fermenterBottom: Evaluation
simulation to pressure control in the fermenter shown in ©f the modelin a free-run.

Fig. 3. At the bottom of the fermenter tank, air is fed into

the water at a specified flow-rate, which is kept constant by reference, but at the same time also quickly settles at all the
the controllen,. Inthe presented experiments, the air pres- correct steady-state values, even though only three control
surey in the tank is controlled by the outlet valve atthe  giternatives are available at each sampling instance. This

top of the tank. Because of the underlying physical mecha-effect is due to the adaptive, scaled set of alternatives.
nisms, and the nonlinear characteristics of the control valve,

the process has nonlinear steady-state characteristics as well .
as nonlinear dynamics. Conclusions

By the fuzzy modeling approach described in Section 2, This paper addresses the main steps in model-based con-
a MISO fuzzy model of the pressure dynamics is identified trol: the identification of the model and the design of the

from systems measurements: controller. It presents a complete, data-driven approach
based on fuzzy techniques, which are applicable to (small)
y(k+1) = fy(k),ui(k)) , (20)  real-world processes. Recent research by the authors was

aggregated and presented in this paper to solve the main
problems encountered in model-based control. First, the
need for good control performance was solved by applying
R;: IFz(k)is A; THENy(k+1) = aTa(k) + b; , (21) model predictive control, which needs an accurate and com-
putationally fast model, especially for nonlinear processes.
wherei = 1,...,5 andz(k) = [y(k),u:1(k)]. The model Fuzzy models of the Takagi-Sugeno type present both prop-
was obtained by using. = 2 and a rule contribution thresh-  erties for a large number of processes. When the model is
old of 10% (p = .1) in the cluster algorithm (see appendix). too complex for control purposes, it can be simplified by
A validation of the model in a recursive simulation (free- applying supervised fuzzy clustering to sampled data, as in
run) is shown in Fig. 3. A description of the used simulation this paper. The application of nonlinear models to MPC
model can be found in [12, 13] where this system was alsoresults usually in a non-convex optimization problem. This
studied. problem s solved by applying branch-and-bound; a discrete
The performance of the discrete MPC controller with optimization algorithm. The application of B&B, however,
B&B optimization as described in Section 3 is shown in introduces a trade-off between computational time and per-
Fig. 4. The set of three adaptive decision alternatives with formance in discrete MPC. This problem was solved by us-
fuzzy scaling as given in (19) was used. From the resultsing adaptive control alternatives. The global fuzzy model-
it is seen that the controller acts very fast to changes in thebased control approach is applied to pressure control of a

wheref(:) is a fuzzy model of the TS type constituted by
five rules with a two-dimensional premise:
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Figure 4:Top: Time responses for a given reference (solind

line). Bottom: The corresponding control efforf, =
H.=4).

elseifdg; =0

ugi) =1.

Step 5:Run OLS reduction algorithm:
if JTUD — U1 < 2¢ run OLS algorithm and keep only
the the selected/s clusters

U® .— yMs)
M = M,

until [JUD — U] < e,
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