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Abstract:This paper addresses the main steps in model-based control: the identification of the model and the design of the
controller. A series of recent research results is aggregated to present a complete approach. A fuzzy model of the system
is identified from sampled data using supervised fuzzy clustering for rule extraction. This model is applied in model
predictive control (MPC) of the process. The non-convex optimization problem introduced by a nonlinear plant model is
solved by discretizing the control space and apply discrete search techniques. The trade-off between computational time
and performance that follows from the discretization is addressed by using fuzzy rule-based optimization to adapt the
discrete control actions. The global fuzzy model-based control approach is applied to pressure control of a fermentation
tank.
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1 Introduction
The classical control design of a model-based control sys-
tem has several steps, starting with the modeling of the pro-
cess under control, followed by the choice of the design
specifications and their combination in performance crite-
ria, and finally designing the controller. The choice of per-
formance criteria and the design of the controller can be
joined in several control schemes such as model predictive
control (MPC). Thus, two main steps can be considered:
modeling and design of the controller. For complex, non-
linear processes, the interest focus on data-driven modeling.
In MPC, the non-linearity of the model and the presence
of constraints lead to a non-convex optimization problem.
There is thus a need for both accurate and compact (com-
putationally fast) models as well as efficient optimization
routines in the real-time application of MPC to general non-
linear processes.

This paper addresses these issues and presents a com-
plete, data-driven approach based on fuzzy techniques, ap-
plicable to (small) real-world processes. Recent research by
the authors is aggregated and presented in this paper to solve
the various problems encountered in model-based control:

1. Good performance in control of real-world processes
! apply model predictive control [1].

2. Modeling of a nonlinear process! use the Takagi-
Sugeno (TS) type fuzzy model [2].

�This work was supported by the the Research Council of Norway.

3. Obtaining a compact TS model! apply supervised
fuzzy clustering to sampled data [3].

4. Solve the non-convex optimization in MPC! apply
discrete MPC with branch-and-bound [4].

5. Trade-off computational effort / performance in dis-
crete MPC! use adaptive control alternatives[5].

In the following, Section 2 describes fuzzy modeling
based on supervised fuzzy clustering. The approach pre-
sented in [3] is extended to an adaptive distance clustering
algorithm. A brief description of discrete MPC applied to
nonlinear processes is presented in Section 3 together with
the branch-and-bound (B&B) optimization. The computa-
tional cost / performance trade-off in discrete MPC is dealt
with by using of a low number ofadaptive control alterna-
tives, and Section 4 describes adaptive control actions based
on fuzzy rules. The presented model and control tools are
applied to the pressure control of a fermentation tank in Sec-
tion 5. Finally, Section 6 concludes the paper.

2 Fuzzy Modeling
A data-driven fuzzy modeling approach is described that
provides the user with compact and accurate rule-based
models. The approach can favorably be combined with the
complexity reduction methods presented in [6].



2.1 The Takagi-Sugeno fuzzy model
Takagi-Sugeno (TS) [2] fuzzy models have rules where the
consequents are linear functions of the inputs:

Ri : IF x isAi THEN ci = aTi x+bi ; i = 1; : : : ;M: (1)

Herex 2 IRn is the input vector andci 2 IR is the output
(consequent).Ri denotes theith rule whos antecedent fuzzy
setAi is defined by a multivariable membership function
�Ai

(x) : IRn ! [0; 1].
The total output of the model is computed by aggregating

the individual rules contributions

y(k) =
MX
i=1

ukici (2)

whereuki is the normalized degree of fulfillment of the an-
tecedent clause of ruleRi for an inputxk

uki =
�Ai

(xk)PM
j=1 �Aj

(xk)
(3)

2.2 Data driven identification
GivenN input-output data pairsfxk; ykg wherexk is then
dimensional input vector[x1k; x2k; : : : ; xnk]T andyk is to
be approximated by the model givenxk. We can write (2)
as a linear regression model

y = UC + e (4)

wherey = [y1; y2; : : : ; yN ]
T are the measured outputs,

C = [c1; c2; : : : ; cM ]T are the consequents of theM rules,
ande contains the approximation errors. The matrixU =
[u1;u2; : : : ;uM] 2 IRN�M, contains the degrees of fulfill-
mentui = [u1i; u2i; : : : ; uNi]

T of all theM rules for the
N inputsxk.

The identification of (1) is a two step approach. First
the fuzzy antecedentsAi are determined by means of fuzzy
clustering. Then, when the matrixU in (4) is known, the
rule consequentsC are determined by least-squares param-
eter estimation.

2.2.1 Identification by fuzzy clustering
To identify the model (1), the regression matrixXT =
[x1; : : : ;xN] and an output vectoryT = [y1; : : : ; yN ] are
constructed from the available data. Fuzzy clustering is ap-
plied to the product-space ofX andy to identify regions
where the systems behaviour is approximated by local linear
models of the form (1). Given the dataZT = [X; y] and an
estimated number of clustersM , we apply the Gustafson-
Kessel (GK) [7] algorithm to compute the fuzzy partition
matrix U whoseikth elementuik 2 [0; 1] is the member-
ship degree of the data objectzk 2 Z, in clusteri. Thus, the
rows ofU contain point-wise represented multi-dimensional
fuzzy setsAi, that are defined by the cluster prototypevi in

the input space, and a function assigning a degree of mem-
bership of the input to the set depending on its distance to
the prototype (see the appendix):

Ai(x) = �(vi;x) : (5)

The most important issue when applying clustering is the
determination of the relevant number of clusters (rules). In
[3] it was proposed to use an orthogonal-least squares rule
reduction algorithm [8] to supervise the clustering process.
Using the Gram-Schmidt orthogonalization, the partition
matrix U, corresponding also toU in (4), is decomposed
into U = QR, whereQ 2 IRN�N is a matrix with orthog-
onal columnsqj , andR 2 IRM�M is upper triangular with
unity diagonal elements. The error reduction ratio due toqj
can be defined as [8]

[err]j = (g2ju
T
j uj)=(y

Ty) ; 1 � j �M ; (6)

wheregj is thejthe entry ofg = RC 2 IRM. In [8] this
ratio was used to seek a subset of important regressors in a
forward-regression manner. For fuzzy modeling, this corre-
sponds to a subset of important fuzzy rules, and in [3] a rule
contribution factor was derived based on (6) and applied to
clustering. When clustering is close to convergence, given
the partition matrixU, thej = 1; : : : ;MS most important
columns (clusters) ofU are selected until the least impor-
tant of the selected clusters has a relative contribution less
than a factor� of the previously selected clusters:

PMS

j=1[err]j �
PMS�1

j=1 [err]jPMS�1
j=1 [err]j

< � ; � 2 [0; 1] (7)

Only theMS selected clusters are retained for further opti-
mization by the cluster algorithm.

We combine this algorithm with the GK algorithm (see
the appendix), that unlike the approach in [3], applies an
adaptive distance measure to detect clusters of different
shapes and orientation in the same data set.

2.2.2 Estimating the rule consequents
The parameters of the consequentsci = aTi x + bi are ob-
tained as a least-square estimate. LetXe denote the matrix
[X;1], �i is a diagonal matrix in IRN�N having the normal-
ized degree of fulfillmentuki as itskth diagonal element.
Further, denoteX0 the matrix in IRN�MN composed of ma-
trices�i andXe

X0 = [(�1Xe); (�2Xe); : : : ; (�MXe)] : (8)

Denote�0 the vector in IRM(n+1) given by

�0 =
h
�T1 ;�

T
2 ; : : : ;�

T
M

iT
(9)

where�Ti = [aTi ; bi] for 1 � i � M . The resulting least-
squares problemy = X0�0 + e, corresponding to (4), has
the solution

�0 =
�
(X0)TX0

��1
(X0)Ty : (10)



From eq. (9), the parametersai andbi are obtained by:

ai = [�0q+1; �
0

q+2; : : : ; �
0

q+n]
T ; bi = [�q+n+1] ; (11)

whereq = (i� 1)(n+ 1).

3 Model Predictive Control
Predictive control is a general methodology for solving con-
trol problems in the time domain having one common fea-
ture; the controller is based on the prediction of the future
system behavior by using a process model. MPC is based on
the following basic concepts: 1) Use of an available (non-
linear) model to predict the process outputs at future dis-
crete time instants over a prediction horizon. 2) Computa-
tion of a sequence of future control actions using the model
of the system by minimizing a certain objective function.
3) Receding horizon principle; at each sampling instant the
optimization process is repeated with new measurements,
and the first control action obtained is applied to the pro-
cess. Because of the explicit use of a process model and the
optimization approach, MPC can handle multivariable pro-
cesses with nonlinearities, non-minimum phase behavior or
long time delays, and can efficiently deal with constraints.

The future plant outputs for a determinedprediction hori-
zonHp are predicted at each time instantk using a model
of the process. The predicted output valuesŷ(k + i), i =
1; : : : ; Hp depend on the states of process at the current time
k (given, for instance, by the past input and outputs) and on
the future control signalsu(k + j), j = 1; : : : ; Hc, where
Hc is thecontrol horizon. The control signals change only
inside the control horizon, remaining constant afterwards,
i.e.,u(k + j) = u(k +Hc � 1), for j = Hc; : : : ; Hp � 1.
The sequence of future control signals is obtained by opti-
mizing an objective (cost) function which describes the con-
trol goals. The objective function is usually of the following
quadratic form:

J(u) =

HpX
i=1

(r(k+i)�ŷ(k+i))2+�(�u(k+i�1))2; (12)

or some small modifications of it, wherêy are the predicted
process outputs,r is the reference trajectory, and�u is the
change in the control signal weighted by the parameter�.
The first term of (12) accounts for the minimization of the
output errors, the second term represents the minimization
of the control effort, and� determine the weighting be-
tween the two in the global criterion [9]. The process inputs
and outputs, as well as state variables, can be subjected to
constraints, which are then incorporated in the optimization
problem.

The performance of MPC depends largely on the used
process model. The model must be able to accurately pre-
dict the future process outputs, and at the same time be com-
putationally attractive to meet real-time demands. Using
nonlinear fuzzy models, as described in Section 2, results

in a non-convex optimization problem. In this case, both
theSequential Quadratic Programming(SQP) method [10]
and thesimplex method[11], which are both iterative op-
timization techniques, can be considered. However, these
methods have generally high computational costs and often
converge to local minima. By discretizing the control ac-
tions, the efficient branch-and-bound algorithm can be used
to search the discrete space for the best solution. This has
proven to give better results than iterative optimization tech-
niques [4].

Branch-and-Bound Optimization
In discrete MPC, B&B can be used for the optimization
problem that must be solved at each time instantk. A B&B
algorithm can be characterized by the following two rules:
i) Branching rule- defines how to divide a problem into
sub-problems; ii)Bounding rule- establishes lower and up-
per bounds in the optimal solution of a sub-problem, where
these bounds allow for the elimination of sub-problems that
do not constitute an optimal solution. Usually, these two
basic rules are applied recursively in B&B methods.

The B&B method can only be applied to predictive con-
trol when the control actions are discretized. The model of
the system under control predict the future outputs of the
systemŷ(k + 1); : : : ; ŷ(k +Hp), and is given by:

ŷ(k+ i) = f(x(k+ i� 1); u(k+ i� 1)); i = 1; : : : ; Hp :
(13)

Let the possible inputs of the system be discretized inK
possible control actions. Let also the discretized control ac-
tions be denoted!j . Thus, at each step the control actions
u(k + i� 1) 2 
, are given by


 = f!j jj = 1; 2; : : : ;Kg: (14)

In predictive control, the problem to be solved is normally
represented by an objective function minimizing the pre-
dicted error and the control effort. This optimization prob-
lem is successively decomposed by the branching rule into
smaller sub-problems. At time instantk + i the cumulative
cost of a certain path followed so far, and leading to the state
x(k + i) and output̂y(k + i) is given by

J (i) =
iX

`=1

h
(r(k+`)� ŷ(k+`))2 + �(�u(k+`�1))2

i
;

(15)
wherei = 1; : : : ; Hp, denotes the level corresponding to the
time stepk + i. A particular branchj at leveli is created
when the cumulative costJ (i) plus a lower boundon the
cost from the leveli to the terminal levelHp for the branch
j, denotedJLj

, is lower than anupper boundof the total
cost, denotedJU :

J (i) + JLj
< JU : (16)

Let the total number of branches verifying this rule at level
i be given byN . In order to increase the efficiency of the



B&B method, is required that this number should be as low
as possible, i.e.N � K. Note that no branching takes place
for i > Hc � 1 (beyond the control horizon), i.e., the last
control actionu(k +Hc � 1) is applied successively to the
model, untilHp is reached. In order to achieveN � K,
the upper bound should be as low as possible (close to the
optimal solution) and the lower bound as large as possible,
in order to decrease the number of new branchesN .

The B&B algorithm applied to MPC always finds the
global discrete optimal solution, guaranteeing a good con-
trol performance when the number of control actionsK is
sufficiently large. Moreover, B&B does not need any ini-
tial guess, and hence its performance cannot be negatively
influenced by a poor initialization, as in the case of itera-
tive optimization methods, and the B&B method implicitly
deals with constraints. In fact, the presence of constraints
improve the efficiency of bounding, restricting the search
space by eliminating non-feasible sub-problems.

Two serious drawbacks of B&B are the exponential in-
crease of the computational time with the control horizon
and the number of alternatives, and the discretization of the
possible control actions. This discretization can cause chat-
tering, overshoots and slow step-responses. A solution to
this problem is to adapt the control alternatives to better suit
the present situation in the system [5].

4 Adaptive control actions
In order to solve the drawbacks of the B&B optimization
described in the previous section, adaptive set of discrete
inputs can be used. Letu(k) 2 U represent the control ac-
tion at time instancek, whereU = [U�; U+] is the domain
of the manipulated variable. Let also the upper and lower
bounds of the possible change in the control signal at time
k, u+k andu�k respectively, be given by

u+k = U+ � u(k � 1) ; u�k = U� � u(k � 1) :

The valuesu+k andu�k are thus the maximum changes al-
lowed for the control action, when this is being increased
or decreased, respectively. The control action at timek + i,
i = 0; : : : ; Hc � 1 is given by

u(k + i) = u(k + i� 1) + !j(k) ; (17)

where!j(k) 2 
k is the change in the control action se-
lected by the B&B optimization algorithm from the set of
alternatives
k. An adaptive set
k is created by using a
scaling factor(k) 2 [0; 1], which depends on the activation
of simple fuzzy rules, applied to a dynamic set of actions as
opposed to the static set
 in (14):


k = (k) � f�l u
+
k ; 0�l u

�

k jl = 1; 2; : : : ; Ng ; (18)

where the values�l can be chosen such that the control al-
ternatives are linear or logarithmically distributed. In the
application in Section 5, we simply use�l = 1=(4l), with
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Figure 1: Fuzzy sets used in rule base.

N = 1, giving a minimum set of possible actions


k = (k) � fu+k =4; 0; u
�

k =4g : (19)

The scaling factor(k) is determined at each instantk by
simple fuzzy rules concerning the predicted errorê(k+Hp)
and the change in the output�y(k) = y(k)�y(k�1). The
rules are derived from simple heuristics. For instance, when
�y(k) is small, andê(k + Hp) is also small, the system
is close to a steady-state situation. The set of control alter-
natives should then be scaled down to allow finer control
actions, i.e.(k) ! 0, in order to approach zero steady-
state error without introducing oscillations around the set-
point. When the predicted error is high, bigger corrective
steps should be taken, i.e.(k)! 1.

The exact definition of the rules is not critical, and the
domains of the two variableŝe(k +Hp)=y(k) (relative pre-
dicted error) and�y(k)=y(k) (relative change in output)
have both been partitioned by three fuzzy sets representing
Negative, Zero,andPositive, as shown in Fig. 1. By combi-
nation, this gives a simple fuzzy rule base of nine rules, de-
termining the scaling factor(k), as given in Table 1. The

Table 1: Fuzzy scaling rules for(k)
ê(k +Hp)=y(k) �y(k)=y(k) (k)

Neg Neg 1.0
Neg Zero 1.0
Neg Pos 0.2
Zero Neg 0.7
Zero Zero 0
Zero Pos 0.7
Pos Neg 0.2
Pos Zero 1.0
Pos Pos 1.0

rule base is a zero order Takagi-Sugeno model [2], and the
resulting control surface for the scaling factor(k) is shown
in Fig. 2.

To summarize, equation (18) represents a dynamic set of
alternative changes of the control action that can be applied
at time instancek. The control alternatives are determined
by the available control space at this time, as defined in (17).
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Figure 2: Value of(k) as function of predicted error̂e(k+
Hp) and change in output�y(k).

Further, the alternatives are scaled by the factor(k), which
is determined by the fuzzy rule base in Table 1 considering
the state of the system at timek. Finally, constraints on the
control signal concerning, e.g., the rate of change can be
directly implemented when selecting the parameters�i.

5 Application example
The described modeling and control scheme is applied in
simulation to pressure control in the fermenter shown in
Fig. 3. At the bottom of the fermenter tank, air is fed into
the water at a specified flow-rate, which is kept constant by
the controlleru2. In the presented experiments, the air pres-
surey in the tank is controlled by the outlet valveu1 at the
top of the tank. Because of the underlying physical mecha-
nisms, and the nonlinear characteristics of the control valve,
the process has nonlinear steady-state characteristics as well
as nonlinear dynamics.

By the fuzzy modeling approach described in Section 2,
a MISO fuzzy model of the pressure dynamics is identified
from systems measurements:

y(k + 1) = f(y(k); u1(k)) ; (20)

wheref(�) is a fuzzy model of the TS type constituted by
five rules with a two-dimensional premise:

Ri : IF x(k) isAi THEN y(k+1) = aTi x(k)+ bi ; (21)

wherei = 1; : : : ; 5 andx(k) = [y(k); u1(k)]. The model
was obtained by usingm = 2 and a rule contribution thresh-
old of 10% (� = :1) in the cluster algorithm (see appendix).
A validation of the model in a recursive simulation (free-
run) is shown in Fig. 3. A description of the used simulation
model can be found in [12, 13] where this system was also
studied.

The performance of the discrete MPC controller with
B&B optimization as described in Section 3 is shown in
Fig. 4. The set of three adaptive decision alternatives with
fuzzy scaling as given in (19) was used. From the results
it is seen that the controller acts very fast to changes in the
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Figure 3: Top: Laboratory fermenter.Bottom: Evaluation
of the model in a free-run.

reference, but at the same time also quickly settles at all the
correct steady-state values, even though only three control
alternatives are available at each sampling instance. This
effect is due to the adaptive, scaled set of alternatives.

6 Conclusions
This paper addresses the main steps in model-based con-
trol: the identification of the model and the design of the
controller. It presents a complete, data-driven approach
based on fuzzy techniques, which are applicable to (small)
real-world processes. Recent research by the authors was
aggregated and presented in this paper to solve the main
problems encountered in model-based control. First, the
need for good control performance was solved by applying
model predictive control, which needs an accurate and com-
putationally fast model, especially for nonlinear processes.
Fuzzy models of the Takagi-Sugeno type present both prop-
erties for a large number of processes. When the model is
too complex for control purposes, it can be simplified by
applying supervised fuzzy clustering to sampled data, as in
this paper. The application of nonlinear models to MPC
results usually in a non-convex optimization problem. This
problem is solved by applying branch-and-bound; a discrete
optimization algorithm. The application of B&B, however,
introduces a trade-off between computational time and per-
formance in discrete MPC. This problem was solved by us-
ing adaptive control alternatives. The global fuzzy model-
based control approach is applied to pressure control of a
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Figure 4:Top: Time responses for a given reference (solind
line). Bottom: The corresponding control effort (Hp =
Hc = 4).

fermentation tank. The obtained performance revealed to
be considerably better than other model-based control tech-
niques used previously.

Appendix: Cluster algorithm
Given the dataZ, a too high number of clusters1 < M <
N , the fuzzinessm > 1, the rule contribution threshold�,
and the termination tolerance� > 0. Initialize U(0) ran-
domly.

Repeat for l = 1; 2; : : :
Step 1:Compute cluster prototypes:

v
(l)
i =

PN
k=1(u

(l�1)
ki )mzkPN

k=1(u
(l�1)
ki )m

; 1 � i �M :

Step 2:Compute covariance matrices:

Fi =

PN

k=1(u
(l�1)
ki

)m(zk � v
(l)
i
)(zk � v

(l)
i
)TPN

k=1(u
(l�1)
ki

)m
;

for 1 � i �M .

Step 3:Compute distances to cluster prototypes:

dki = (zk � vi)
T
h
(det(Fi)

1=(n+1)F�1
i

i
(zk � vi) ;

for 1 � i �M; 1 � k � N .

Step 4:Update the partition matrix:
for 1 � i �M; 1 � k � N ,
if dki > 0

u
(l)
ki =

1PM
j=1(dki=dkj)

2=(m�1)
;

else ifdki = 0
u
(l)
ki = 1:

Step 5:Run OLS reduction algorithm:
if kU(l) � U(l�1)k < 2� run OLS algorithm and keep only
the the selectedMS clusters

U(l) := U(Ms)

M :=Ms

until kU(l) �U(l�1)k < �.
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