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Abstract: The magnitude optimum method provides a non-oscillatory closed-loop response for a large class of
process models. However, by applying this technique to low-order processes, the process poles could be
cancelled by the controller zeros. This may lead to poor attenuation of load disturbances if the cancelled poles
are excited by disturbances, and if they are slow compared to the dominant closed-loop poles. This paper
shows that the described deficiency can be suppressed by slightly changing the optimisation criterion of the
magnitude optimum method. This novel idea is supported by several simulations and one real-time experiment

on a laboratory set-up.
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1. Introduction

The Ziegler-Nichols tuning rules [10] were the very
first tuning rules for PID controllers, and it is
perhaps surprising that they are still widely used
today. Their popularity lies in their simplicity and
efficiency. This is why so many different tuning
rules based on the same tuning procedures have
subsequently been developed [3].

Following the work of Ziegler and Nichols, a variety
of PID tuning methods have been developed. In
general, these methods can be divided into two main
groups: direct and indirect tuning methods [1, 3].

The direct tuning methods do not require a process

model, while the indirect methods calculate
controller parameters from an identified model of the
process.

The direct methods are divided into rule-based
methods and iterative search procedures. Controller
tuning is usually performed in a closed-loop system.
However, the tuning procedure is relatively long and
requires an initially tuned controller and an a-priori
defined “desired” closed-loop response.

The indirect tuning methods are usually based on the
process model obtained from a transient (step)
response or frequency response experiment.
Therefore, the quality of the calculated controller
parameters depends on the quality of the identified
process model.

One of the indirect tuning methods is the magnitude
optimum (hereafter “MO”) method [4, 5], which
results in a relatively fast and non-oscillatory system
closed-loop response. However, the MO method is
originally used for achieving superior reference
tracking performance. On the other hand, by using
the MO method, the process poles could be cancelled
by the controller zeros. This may lead to poor
attenuation of load disturbances if the cancelled
poles are excited by disturbances and if they are slow
compared to the dominant closed-loop poles [2].
Poorer disturbance rejection performance can be
observed when controlling low-order processes. This
is one of the most serious drawbacks of the MO
method since, in process control, good disturbance
rejection performance is usually more important than
superior reference tracking performance.



However, as will be shown in this paper, “optimal”
disturbance rejection properties can be achieved as
well by slightly modifying the MO method.

2. Description of the MO Method

One possible objective when designing a control
system is that the system’s output instantaneously
follows the reference. In other words, the closed-loop
system should have an infinite bandwidth and zero
phase shift. However, in practice this is not possible
since every system contains some time delay and/or
dynamics and controller gain is limited due to the
physical limitations.

Therefore, the system’s dynamics cannot be ignored,
and a new design objective is needed. One possible
design objective is to maintain the closed-loop
magnitude response curve as flat and as close to
unity for as large bandwidth as possible for a given
plant and controller structure [4, 6]. Therefore, the
idea is to find a controller that results in magnitude
response flat and close to unity for as large a
bandwidth as possible (see Fig. 1). It results in a fast
and non-oscillatory closed-loop response for a large
class of processes.
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Fig. 1. Magnitude optimum (MO) criterion.

This technique is called magnitude optimum (MO)
[6], modulus optimum [2], or Betragsoptimum [2, 5],
and results in a fast and non-oscillatory closed-loop
time response for a large class of process models.

If G¢;(s) is the closed-loop transfer function from the
set-point to the process output, the controller is
determined in such a way that

G, (O) =1

d'|G,(iw)| 0 (1)
do" |, -

for as many r as possible [2].

Let us assume that the actual process is described by

the following transfer function:
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where Kpp denotes the process steady-state gain, and
a, to a, and b, to b, are the corresponding
parameters (m<n) of the process transfer function,
where 7 can be an arbitrary positive integer value.

The controller structure is chosen to be of the PI type
(see Fig. 2), described by the following transfer

function:
G.(s)= Uls) _ K{l + i} . 3)
sT;
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Fig. 2. The PI controller in the closed-loop with the
process.

Then the PI controller parameters can be
expressed by the unknown process parameters
[7,8,9]:
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The given tuning procedure will now be illustrated in
two examples.

Case 1
The process is assumed to have the transfer function:
1
G, = . ©6)
(1+s)
The PI controller parameters, resulting from

equations (4) and (5), are as follows:



K=0437, T =2.33s . (7)

Fig. 3. shows the closed-loop responses on the
reference change (w=1 at =0s), and on the load-
disturbance (d=1 at =40s) under PI controller (7).
Note that the closed-loop response features fast
tracking and quite good disturbance rejection, which
should be addressed to the MO criterion.

Case 2
The process is assumed to have the transfer function:
1
G= bt @®)
(1+5)1+0.1s)
The PI controller parameters, resulting from
equations (4) and (5), are as follows:
K =5.05,T7 =1.001s . )
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Fig. 3. The closed-loop response to the step change
in reference signal and disturbance signal; the PI
controller applied is tuned by the MO method.

Fig. 4. shows the closed-loop responses on the
reference change (w=1 at =0s), and on the load-
disturbance (d=1 at +=5s) under PI controller (9).
Note that the closed-loop response again features
good tracking, but disturbance rejection is now quite
sluggish. The reason is that the process is of a low
order so the controller zero practically cancelled the
slowest process pole.
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Fig. 4. The closed-loop response to the step change
in reference signal and disturbance signal; the
controller applied is tuned by the MO method.

3. Improving Disturbance Rejection by
Means of the MO Method

In the previous section, it was shown that the MO
method provides quite fast and non-oscillatory
closed-loop response on reference change
irrespective of the process order. On the other hand,
disturbance rejection is degraded when dealing with
low-order processes, since slow process poles are
almost entirely cancelled by controller zero.

This is reasonable since the MO method aims at
achieving good reference tracking, so it optimises the
transfer function G (s)=Y(s)/W(s) and not the
transfer function G (s)=Y(s)/D(s). Let us now
express Gei(s) in terms of Gy (s):

Gy ()= G pp ()G (5) = Gy (5) 2 (14 5T =

sT . (10)
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where
G(,w(s)zMﬁ . (11)
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From expression (10) it is clear that the controller’s
zero (1+s7;) plays an important role within Gy(s),
which is actually “optimised” by the original MO
method (see Fig. 1). On the other hand, the
controller’s zero can significantly degrade
disturbance rejection performance. A new strategy



proposed herein is to optimise the transfer function
Gero(s) (11) instead of G¢z(s) in expression (1).

The resulting PI controller parameters, when
replacing G¢y(s) with Geyo(s) in expression (1), can
be expressed by the unknown process parameters:
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4. Examples

Three simulated examples and one real-time
experiment on a laboratory set-up were performed to
depict the above results in more detail.

Case 3

The process is assumed to have the same transfer
function as in Case 1. The PI controller parameters
resulting from equations (12) and (14) are as follows:

K=0465 T =2.17s . (18)

The calculated parameters are almost the same as
those given in expression (7). It is therefore expected
that disturbance rejection performance will remain
almost the same. This assumption is confirmed by
the closed-loop responses given in Fig. 5.
Disturbance rejection properties remained quite good
(solid line).

Case 4

The process is assumed to have the same transfer
function as in Case 3. The PI controller parameters
resulting from equations (13) and (14) are as follows:

K =5.05,T =0304s . (19)
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Fig. 5. The closed-loop response of the process (6) to
disturbance signal (¢=1 at =0); __ PI controller (18),
-- PI controller (7).

The calculated proportional gain is the same as that
given in expression (9). On the other hand, the
parameter of the integral term is now quite lower.
The closed-loop responses on disturbance occurrence
(d=1 at t=0s) are given in Fig. 6. Disturbance
rejection properties are now quite improved (solid
line) in comparison to the original MO method
(dashed line).
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Fig. 6. The closed-loop response of the process (8) to

disturbance signal (¢=1 at r=0); __ PI controller (19),
-- PI controller (9).



Case 5

The last experiment was conducted on the three-tank
system shown in Fig. 7. The water comes from
reservoir Ry (see schematic diagram in Fig. 8)
through pump P, to water column R,. Valves V; and
V5 are closed. The process input is the voltage on the
pump P;, and the process output is the water level in
water column R; (/).
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Fig. 8. Schematic diagram of the laboratory set-up.

Fig. 9. shows the open-loop process step response
from which the following process parameters are
estimated: Kpp=2.151, a;=28.729, a,=164.34, a;=0,
b1=b,=b;=0. The corresponding PI controller
parameters are obtained from expressions (4) and
(5), and are:

K =0.702, T, =21.6s . (20)

The closed-loop response is shown in Fig. 10. The
reference following seems to be very good, while
disturbance rejection appears to be quite sluggish. In
order to improve disturbance rejection performance,
the PI controller parameters are re-calculated, using
expressions (13) and (14):

K=0.702, T =13.8s . 1)

Fig. 11 shows improved disturbance rejection
performance (solid-line) while using re-calculated PI
controller parameters (21) in comparison to the
performance achieved using the controller with the
originally calculated parameters (dashed-line) (20).

5. Conclusions

The purpose of this paper was to present a
modification to the original MO method in order to
achieve “optimal” disturbance rejection
performance. The given modification is simple and
straightforward for implementation in practice.
Simulation experiments on two types of process
models have shown that the proposed approach
results in very good disturbance rejection properties.
The modified method was also tested in real-time on
a laboratory set-up. It was shown that the proposed
approach also works well in practice.

On the other hand, the original MO method, as well
as the proposed modification, does not guarantee
stable closed-loop responses [7, 9]. Unstable
responses can be obtained when dealing with
processes with oscillating poles or “strong” zeros [7].
Fortunately, such processes are rare in practice.

' Estimation of the process parameters is made by means of
the multiple integration method [7, 8, 9].
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Fig. 9. The process open-loop response on input
step-change.
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Fig. 10. The closed-loop response to the step change
in reference signal and disturbance signal; the
controller applied is tuned using the MO method
(20).
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Fig. 11. The closed-loop response of the laboratory
set-up to disturbance signal (d=1 at =0); _ PI
controller (21), -- PI controller (20).
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