
Training of Neural NetworksUsing aNewFilter Based on

theKalman Filter

MOHAMED ELHASNAOUI
Service d'Automatique CP 165/55

Free University of Brussels

50, Av. F. Roosevelt, 1050 Brussels

BELGIUM

melhasna@ulb.ac.be

Abstract: In this paper we describe a recursive estimator for �ltering nonlinear systems, [2]. It is based on

the Kalman �lter. Unlike the Extended Kalman �lter, which is widely used for the prediction of nonlinear

system, the linearisation is not required and avoids the calculation of the jacobian. This new �lter is used

for the training of the feedforward neural networks and is compared with the extended Kalman �lter.
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1 Introduction

Multilayer neural networks are general tools

for modeling nonlinear functions since they can

approximate any nonlinear function to any de-

sired accuracy. It has been rigorously proved

that any continuous function can be uniformly

approximated by a feedforward neural network.

The weights are �xed using a learning algorithm.

Given a training set of input/output data, the

original learning rule for multilayer perceptrons is

the backpropagation algorithm [5]. It is a steepest

descent algorithm, which is known to converge

slowly. Many attempts have been made to improve

the algorithm. Some of the more interesting meth-

ods involve the coupling of partial least squares

with neural networks, or the use of conjugate

gradient optimization [1]. These methods are sig-

ni�cantly faster than backpropagation, and they

can give more accurate results as well.

Other methods use the Kalman �lter for train-

ing the feedforward and recurrent neural networks.

The Kalman �lter is one of the most widely used

methods for estimating the state of processes de-

scribed by linear stochastic dynamic model. How-

ever, in most applications of interest the system

dynamics are nonlinear. The extended Kalman �l-

ter (EKF) was proposed in order to deal with the

nonlinear systems. The EKF linearises the model

around the current state estimate, and applies the

traditional Kalman �lter to the resulting time-

varying linear model. The EKF is not an optimal

state estimator and its convergence is not guaran-

teed..

The success of a Kalman �lter depends on the

accuracy of its predictions. Inaccurate predictions

degrade �lter performance and can lead to incon-

sistency. In linear systems an exact form solution

exists. However when the system models are non-

linear there are signi�cant problems with accu-

rately predicting the state of the system.

Although the EKF is a widely used �ltering

strategy, it has in practice some well-known draw-

backs: it is diÆcult to implement, diÆcult to tune

and only reliable for systems which are almost lin-

ear on the time scale of update intervals. Lineari-

sation can produce highly unstable �lter perfor-

mance if the time step intervals are not suÆciently

small and the derivation of the jacobian matrices

are non trivial in most applications and often lead

to signi�cant implementation diÆculties. To over-



come those problems, a new recursive method was

proposed in [2] which is based on a new parametri-

sation and avoid the linearisation steps required

by the EKF.

In this paper, the new approach for �lter pre-

diction is used for the training of feedforward neu-

ral networks and it is compared with the standard

EKF.

The structure of this paper is as follows. In sec-

tion 2 we recall the Kalman �lter. In section 3 we

give the extended Kalman �lter and the new �lter.

Section 4 deals with its application to the training

of feedforward neural models. The test of the new

algorithm is given in section 5.

2 The Kalman Filter

We consider the following discrete time process

model, represented in state space form by:

x(k + 1)= f(x(k); u(k); !(k)) (1)

y(k)= g(x(k); u(k); �(k))

where x(k) 2 Rn is the state of the system, u(k) 2

R
q is a known input signal, !(k) 2 Rm is an un-

known disturbance signal, �(k) 2 Rp is the mea-

surement noise and y(k) 2 R
p is the measured

output. The function f(:) : Rn ! R
n describes

the dynamic relationship between the current state

and the next state while g(:) : Rn ! R
p describes

the relationship of the measured outputs to the

states and the inputs.

We assume that the process noise is a Gaussian,

zero mean random variable and has covariance

Q(k): It is further assumed that the process noise

at any time is independent of the process noises or

the state of the system which have occurred at any

previous time:

E
h
�(k)x(j)T

i
= 0; E

h
�(k)!(j)T

i
= 0

Once the system is in this form, the problem be-

comes the estimation of the state x from the mea-

surement of y.

Determination of the Kalman �lter :

The �lter estimates the state using the process

model, the observation model and a sequence of

observations. By bx(i j k), we will mean the esti-

mate of x(k) using all observations up to and in-

cluding time step k, Y k = fy(0); y(1); : : : ; y(k)g.

De�ning the estimation error as

ex(i j k) = x(i)� bx(i j k)
the covariance of bx(i j k) is given by

P (i j k) = E
hex(i j k)exT (i j k) j Y k

i

The estimate is obtained by updating the predic-

tion with the current observation. The Kalman �l-

ter uses a particular form of its update rule: the es-

timate is equal to the prediction plus the weighted

sum of the innovation vector,

bx(k j k) = bx(k j k � 1) +W(k)�(k)

the innovation vector is de�ned to be the di�er-

ence between the actual observation, y(k) and the

predicted observation by(k j k � 1);

�(k) = y(k)� by(k j k � 1)

W is the Kalman �lter gain. It determines the de-

gree to which the innovation a�ects the new esti-

mate. The Kalman �lter, in its general form, can

be grouped in the following set of equations [2]:

bx(kjk) = bx(kjk � 1) +W(k)�(k)

P (kjk) = P (kjk � 1)� P��(kjk � 1)WT (k)

W(k) = Pxy(kjk � 1)P�1�� (kjk � 1)

�(k) = y(k)� by(kjk � 1)

(2)

Pxy(k j k � 1) is the predicted cross-correlation

matrix between bx(k j k � 1) and by(k j k � 1)

P��(k j k� 1) is the covariance of the innovation.

Linear system :

Let x be the state vector associated with the linear

system:

x(k + 1) = A(k)x(k) + w(k)



A(k) is a known n � n matrix and w(k) is an n-

dimensional white process noise. It is assumed that

Q(k) = E
h
w(k)w(k)T

i

is known for each k, and that E
h
w(k)x(k)T

i
= 0

for j � k:

The measurement equation is given by

y(k) = C(k)x(k) + �(k)

where C(k) is a known m� n matrix, �(k) is the

measurement noise,

R(k) = E
h
�(k)�(k)T

i
is known, and the conditions

E
h
�(k)w(j)T

i
= 0 and E

h
�(k)x(j)T

i
= 0

hold for all j and k.

Theorem 1 (Kalman,1960). The linear mini-

mum variance estimator estimator bx(k j k) may

be generated recursively by:

(a) bx(k + 1 j k + 1) = Abx(k j k) + W(k +

1) [y(k + 1)� CAbx(kjk)], where W(k + 1); the

Kalman gain matrix is given by:

(b)W(k+1) = P (k+1jk)CT
h
CP (k + 1jk)CT+

+R(k + 1)]

and P (k+1 j k) is generated recursively by the

equations

(c) P (k jk) = [I �W(k)C]P (k jk � 1) (covari-

ance update) and

(d) P (k + 1 jk) = AP (k jk)AT + Q(k) (the co-

variance extrapolations).

In the case of nonlinear systems, the optimal

estimation problem remains unsolved, but there

are several approaches which yield suboptimal per-

formance. The simplest and most widely used ap-

proach is the extended Kalman �lter which is a re-

cursive algorithm. The recursive structure allows

simple computations, as only new data is operated

upon to produce a new estimate; all old data can

be thrown away. The EKF is not an optimal state

estimator and its convergence is not guaranteed,

but nevertheless it is used in many applications.

The next section deals with this type of �lter.

3 The extended Kalman �lter

We consider the nonlinear system described

by the equation (1). The extended Kalman �lter

(EKF) predicts the future state of the system

under the assumption that its process and ob-

servation models are linear on the scale of the

error. Expanding the equation (1) as a taylor se-

ries about bx(k j k), the true system propagates

according to :

x(k + 1)= f(bx(k j k); u(k); 0; k) +rfxex(k j k)
+rf!!(k) + h:o:t

where rfx is the Jacobian of f(:) with respect to

x(k) andrf! is the jacobian with respect to !(k).

We assume that the second and higher order terms

in this series are negligible, the predicted mean is

bx(k + 1 j k) � E [f(bx(k j k); u(k); 0; k)
+rfxex(k j k) +rf!!(k) j Y k�1

i
= f(bx(k j k); u(k); 0; k)

provided that both ex(k� 1 j k� 1) and !(k� 1)

are zero-mean random variables. The prediction

error committed by this approximation is

ex(k + 1 j k) = x(k + 1)� bx(k + 1 j k)

� rfxex(k j k) +rf!!(k)
and the prediction covariance is

P (k + 1 j k) = rfxP (k j k)r
Tfx

+rf!Q(k)r
Tf!

in order to complete the set of equations in (2), we

can easily compute the following expressions

by(k + 1jk) = g(bx(kjk); u(k); 0; k)
Pyy(k + 1jk) = rgxP (k + 1jk)rTgx+

rg!R(k)r
Tg!

Pxy(k + 1jk) = P (k + 1jk)rTgx



The Extended Kalman Filter approach is, thus,

apply the standard Kalman �lter to nonlinear

systems by continually updating a linearisation

around the previous state estimate, starting with

an initial guess. In other words, we only consider

a linear Taylor approximation of the system func-

tion at a previous state estimate and that of the

observation function at the corresponding pre-

dicted position.

The EKF su�ers of some drawbacks. In order to

implement the EKF, it is necessary to evaluate,

analytically, the Jacobian matrices of the process

and the observation models. In most applications,

the Jacobian matrices are diÆcult to derive. The

linearisation can produce highly unstable �lters

if the assumption of local linearity is violated. To

overcome those problems a new �lter has been

proposed by Julier et al [2]. It is based on the

approximation of the distribution rather that

the approximation of the process or observation

model. It uses a set of chosen points to parametrise

the means and covariances of probability distri-

butions. In the new �lter, it is not necessary to

calculate the Jacobian.

Derivation of the new �lter, [2]:

The problem is as follows: having the meanbx(k j k) and covariance P (k j k) we would like

to predict bx(k + 1 j k) and P (k + 1 j k) through

the nonlinear function f(:). There are three steps

to follows:

1. Compute the set �(k j k) of 2n points

from the rows or columns of the matrices

�
q
nP (k j k). This set is zero mean and co-

variance P (k j k): Compute a set of points

with the same covariance but with meanbx(k j k), by translating each of the points as

�i(k j k) = �i(k j k) + bx(k j k).
2. Transform each point as �i(k + 1 j k) =

f [�i(k j k); u(k + 1); k + 1] :

3. Compute bx(k + 1 j k) and P (k + 1 j k) by

computing the mean and covariance of the 2n

points in the set �i(k + 1 j k):

In appendix(.) we give the detail of the new

�lter.

4 Application to neural networks

The extended Kalman Filter as a tool for the

recursive parameter estimation of static and dy-

namic nonlinear models, has been applied to the

estimation of the weights of feedforward and re-

current neural networks [3] [4].

We consider the following process

y(k) = f(x(k)) + �(k)

with u and y are, respectively, the input and the

output vectors, � is a random variable with zero

mean and variance �2

�. The modeling problem con-

sist in �nding a neural network which gives a good

estimation of the regression in the input domain

of interest. Since feedforward neural networks

has been shown to be universal approximators,

there exists at least a feedforward neural network

N (u;W); whereW 2 RM represents the weights

of the network, such that

jf(u)�N (x;W)j < "

in the input domain of interest, with " > 0 an arbi-

trary small scalar. The new �lter developed in the

previous section is used as a recursive algorithm for

the estimation of the weights of the neural model

by considering the following dynamic system8><
>:
W(k + 1) = W(k)

by(k) = N (x(k);W) + �(k)

where x(k) is the input vector at time k and by(k)
is the output vector at time k, �(k) is assumed to

be a white noise vector with the covariance matrix

R(k) due to the modelling error. The purpose of

the weight learning of the multilayer neural net-

work is to estimate the weight vectorW such that

the output by(k) tracks the desired output y(k) of

the process using a training set
n
xk; yk

o
k=1:N

: In

absence of any prior knowledge on the process, the

weights are initialised with small random values.

5 Simulation example

In this section we will give a numerical exam-
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Fig. 1. Evolution of the errors: EKF (full line) and

the new �lter (dashed line)
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Fig. 2. Nonlinear system identi�cation using the

new �lter: output of the process (full line) and the

output of the neural network (dashed line)

ple. It deals with the modeling of a nonlinear sim-

ulated process, which is described by the following

equation:

yk=
1

5

 
yk�2yk�1 (yk�1 + 2:5)

1 + y2k�2 + y2k�1
+ uk�2

!

A feedforward neural network is trained to model

the process, having one hidden layer of 5 nodes

with tanh as activation function. the training con-

trol input sequence fukg consists of 200 random

variables with a uniform distribution in [�1; 1] :

The performance of the new �lter is compared with

the standard extended Kalman �lter. The results

of the simulation are shown in �g. 1 and �g. 2. It

is remarkable that, in this example, the proposed

�lter converges more fast than the EKF.

6 Conclusion

We have presented a new algorithm for the

training of the feedforward neural networks. It is

based on the Kalman �lter. Unlike the extended

kalman �lter, it avoids the linearisation and the

calculation of the jacobian of the nonlinear func-

tion.
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Appendix:

In this appendix we summarise the steps of the new �lter, [2]:

1. The set of � points is computed from the n� n matrix P (k j k) as

�(k j k) 2n columns from
q
�(n + �)P (k j k); � 2 R

�
0
(k j k) = bx(k j k)

�i(k j k) = �i(k j k) + bx(k j k)
2. The predicted mean is computed as

bx(k + 1 j k) =
1

n+ �

(
��

0
(k + 1 j k) +

1

2

2nX
i=1

�i(k + 1 j k)

)

where �i(k + 1 j k) = f [�i(k j k); u(k + 1); k + 1]

3. The predicted covariance is computed as

P (k + 1j k) =
1

n+ �
f� [�

0
(k + 1 j k)� bx(k + 1 j k)] [�

0
(k + 1 j k)� bx(k + 1 j k)]

T

+
1

2

2nX
i=1

[�i(k + 1 j k)� bx(k + 1 j k)] [�i(k + 1 j k)� bx(k + 1 j k)]
T

4. The predicted measure is calculated by

by(k + 1 j k) =
1

n + �

(
�Y

0
(k + 1 j k) +

1

2

2nX
i=1

Yi(k + 1 j k)

)

where Yi(k + 1 j k) = f [�i(k + 1 j k); u(k + 1); k + 1]

5. The corresponding covariance is determined by

Pyy(k + 1j k) =
1

n+ �

n
� [Y

0
(k + 1 j k)� by(k + 1 j k)] [Y

0
(k + 1 j k)� by(k + 1 j k)]

T

+
1

2

2nX
i=1

[Yi(k + 1 j k)� by(k + 1 j k)] [Yi(k + 1 j k)� by(k + 1 j k)]
T
o

where P��(k + 1j k) = Pyy(k + 1j k) +R(k + 1):

6. Finally the cross correlation matrix is determined by

Pxy(k + 1j k) =
1

n+ �

n
� [�

0
(k + 1 j k)� bx(k + 1 j k)] [Y

0
(k + 1 j k)� by(k + 1 j k)]

T

+
1

2

2nX
i=1

[�i(k + 1 j k)� bx(k + 1 j k)] [Yi(k + 1 j k)� by(k + 1 j k)]
T
o


