
An Object-Oriented Approach to Software Restructuring

PAUL SAGE AND PETER MILLIGAN
Department of Computer Science
The Queen’s University of Belfast

Belfast BT7 1NN

Abstract: - The past ten years has seen a rapid increase in the availability of multiprocessor architectures, both tightly-
coupled and network oriented. However, the full or even partial potential of these new platforms has not been realized
due to the lack of support for code development. This has encouraged research aimed at the provision of a number of
integrated development environments or IDE’s which assist in either code development from scratch or the migration
of existing or legacy system codes. This paper overviews the problem of source to source translation with respect to
both sequential to sequential and semi-automatic parallelisation by introducing an object model which aims to
encapsulate the essence of code restructuring.

Key-Words: Object-Oriented Restructuring Parallelisation IMACS/IEEE CSCC'99 Proceedings, Pages:3291-3296

1 Introduction
During the past several years there has been a rapid
growth in the development and availability of parallel
architectures. Not all of this growth has been restricted
to the development of tightly coupled platforms
provided by the major hardware manufacturers.
Enhancements in networking technologies have
supplemented the more traditional multiprocessor
architectures with the emergence of distributed
workstation clusters. However, it is clear, that the
availability of development environments for
distributed software has not kept pace with hardware
releases, largely due to the fact that parallel software is
considerably more difficult to develop than more
conventional sequential code. In addition, many of the
users for such architectures are firmly based within the
science and engineering community, and have
traditionally relied on existing or “dusty deck” codes to
support their research. The implicit difficulty in re-
implementing these codes to take advantage of new
hardware has engendered a reluctance to “re-invent the
wheel”.

Consequently, there is a clear need for the provision
of “enabling” technology in the form of a suitable
development environment for parallel software, as
flexible and as easy to use as those which are readily
available for the construction of sequential codes, such
as the Mircosoft Development Studio suite of tools..
Ideally, such an environment should enable the
programmer to reason about a computational problem

in an abstract manner without immediate (and
sometimes limiting) reference to architectural issues.

In 1991 the FortPort project[1][2] was initiated at
Queen’s to examine the automated migration of Fortran
codes (Fortran77) to multiprocessor architectures. The
system was based on a partial compiler model which,
through the processes of lexical and syntax analysis,
could generate a syntax graph representation [6] of a
source program. When supplemented with data gained
from data dependence, “hot spot” analysis and loop
characterization, program loops could be transformed to
remove the impediments to parallelisation and
subsequently partitioned. This process was guided
through use of an expert system containing data and
rules that, on the basis on loop characterization data,
would suggest a transformation pattern for a given loop.

While this approach proved successful the
implementation suffered from a number of limitations,
the most fundamental of which largely restricted the
system to the analysis of Fortran77 codes. The syntax
analyser of FortPort was based around a recursive
descent analyser with a hard coded representation of
the production rules [3,4] defining the source language.
Any desire to accommodate a different source dialect
would, therefore, require a re-implementation of the
syntax analyser. The static nature of the syntax analysis
process has a knock-on effect on subsequent processes
such as data dependence analysis and program
transformation in that they are based around the
manipulation of inherently Fortran structures. These

limitations have been addressed in the wider context
through the development of “parser generator” tools
such as Lex and Yacc aimed at generalizing the source
program decomposition process. These tools, when
provided with a definition of the source language in the
form of production rules, can produce a breakdown of a
given source program, which does, however, remain
closely associated with the source language.

While previously, the system only considered the
specific problems associated with the restructuring of
sequential codes, the knowledge and experiences gained
in the project phases have been used to expand the
analysis domain to examine the general problem of
source to source program restructuring. For example,
the issues underlying the translation of say, Cobol
programs to Java programs, can now be reasoned about
in an effective manner.

This paper introduces an object-oriented model
which aims to address these problems by separating
process from data to provide a more generic framework
for code restructuring.

2 A Modified Approach
To overcome the limitations imposed by the static
nature of FortPort and introduce a more flexible
approach to code restructuring, an object-oriented
design methodology. OMT [10][12], was applied to the
existing processes. This has yielded an updated process
model which moves away from a language-dependent
program representation, in the form of a syntax graph to
a more abstract, object-based program model
(Language Independent Program or LIP). This model
aims to encapsulate the statement dependencies and
semantics of a program without direct reference to the
programming language in which it was originally
encoded. This approach enables the expansion of the
system to consider a range of source languages, thereby
establishing a framework for general code
reengineering.

Three main processes are defined in the general code
restructuring model:

Parse
This process defines the translation of a source program
in a given language to the LIP form:

Parse : source-language-definition X source-program ->
LIP instance

Transform
This process incorporates methods for application-
specific code reengineering such as restructuring for
execution on a parallel architecture, or for sequential to
sequential code translation between distinct languages
such as Cobol and Java:

Transform : LIP instance -> Lip instance

Generate
This process involves the generation of language
specific (and sometimes architecture specific) programs
from the language independent form:

Generate : LIP instance X source-language-definition
-> source-program

The Language Independent Program, together with each
of the programming languages which are used in
conjunction with the system, is defined by the following
class hierarchy:

Program

F77
Program

F90
Program

C
Program

IS_A

Figure 1 : Language Hierarchy

Java
Program

…..

The program class represents the constructs common to
all programming languages and, when instantiated,
represents a single program in a language independent
form. The definition contains a knowledge base, which
contains both data and rules governing the syntax of a
“generic” program. The knowledge base is extended
through sub-classing and contains “purpose specific”
information relating to the restructuring process. For
example, the generic knowledge base contains, among
other, the rules and data which guide the following
processes:

(i) the application of transformations for data
dependence reduction, and
(ii)data and functional partitioning for the
representation of a parallel algorithm.

These are defined in terms of general program structure.
Specific programming languages are represented as
subclasses of class program, from which they inherit
behaviour. Each programming language class contains a
knowledge base defining the production rules of the
specific language, which is used in both the parsing and
code generation processes. This data is represented as
static or class specific data and is consistent and
available for used by any given programming language
instance.

A Language Independent program may be created
from, say, Fortran77 or Cobol using the following code
fragments:

Program p = new F77Program(sourcefile.f77,
errorfile) ; // or

Program p’ = new CobolProgram(sourcefile.cbl,
errorfile) ;

Variable p is a reference to an instance of class
Program, but more specifically, in accordance with the
rules of object-orientation, refers to an instance of a
class which is derived from Program, which in this case
is F77Program. In this way p can be used to refer to a
program in specific terms (i.e. the Fortran77 dialect) or
in general terms. The parsing of the source program is
implicit in the construction of the F77Program object
and produces both the language specific and general
representations of the program. Program analysis
techniques such as Hot Spot analysis [7] and data
dependence analysis [8] may also be performed as
actions of the construction event.

The proportion of the original source program
represented in general terms is determined by how
much of the original syntax, as represented by the
programming language production rules, is written in
terms of the LIP syntax. Redefinition of a given
language syntax is, indeed, a non-trivial process. At the
moment only a portion of the constructs of a language
such as Fortran77 is represented in LIP terms. To
facilitate existing research the redefinition is largely
restricted to loop structures with simple statement
sequences. This does, however, enable the study of data
dependence reduction and partitioning to proceed
within the new framework. Indeed, this approach has
increased the scope for the analysis of feedback on
knowledge assisted transformation. In addition to
testing the outcome of a transformation process by
executing the generated code on actual hardware, it has
become possible to consider the simulated execution of

a Language Independent Program on an appropriately
model abstract architecture. The inclusion of the correct
software metrics within such an abstract definition
could produce a “rule of thumb” guide on the potential
speed of a fragment of code with a given transformation
history, in a fraction of the time that it would take to
execute in reality. The structure of the language
independent program or LIP is discussed in the
following section.

3 The Language Independent Program
The language independent program, LIP, is an object
designed to encapsulate the nature of programs in a
generalized but simple fashion. The LIP object
describes a program (See figure 2) as a single entity
which is composed of a sequence of statements with a
well-defined thread of execution.

Program

Statement 1

Statement N

Statement 2

Figure 2 : Program Representation

A program statement is represented by a Statement
object that can have a number of subtypes defining the
types of statement found in any programming language.
Under current definitions (See figure 3) a Statement
object may be one of the following:

 An Iteration Statement or Loop Statement,
 A Selection Statement,
 A Statement block,
 An Assignment Statement

Statement

Iteration Selection Assignment Block

Figure 3 : The Program Statement Hierarchy

An instance of the Iteration Statement class defines a
program loop with instance variables describing the
iteration space (either in absolute terms or as a linear
function of integer variables used to control the loop)
together with the loop body, which is represented as a
sequence of Statement objects. The Selection Statement
class is used to instantiate objects representing
alternative program paths, with choice based on
evaluation of an associated boolean expression. A
Statement block object is simply another statement
sequence treated as a single entity. Assignment
Statement objects represent simple assignments of the
form:

Variable = expression ;

where Variable represents a simple program variable of
a primitive type or an array element of primitive type,
and expression is limited to a simple expression formed
by combining primitive variable with a range of logical
and mathematical operators.

Data dependencies, which inhibit concurrency, are
maintained within the program structure at the
statement level through a “dependency association”
object, which describes the nature of a dependency
between two statements.

4 Expressing Explicit Concurrency
In addition to dependency information defining
potential parallelism the LIP can be extended to
represent a parallel program model. The extended
model describes a parallel program in general terms
without reference to any particular architecture and
aims to be as general and as useful as the sequential
programming model for von Neumann architectures.

The von Neumann model assumes that a processor
can execute sequences of instructions which not only
specify the thread of control, but the addresses of data
to be read from and written to. It is possible to program
in terms of this sequential model by writing appropriate
machine language but this approach has long since been
replaced by modular design techniques: programs are
structured from simple components which are, in turn,
expressed in terms of higher-level abstractions such as
loop statements, selection statements and procedure
calls. These abstractions help the exploitation of
modularity as objects can be manipulated without
concern for their internal structure. Sequential programs
expressed in this form may be easily translated into

executable code. Production of programs for parallel
architectures introduces more complexity and,
therefore, the concepts of abstraction and modularity
are at least as important as in sequential programming.

To be of practical use the model must satisfy four
fundamental requirements for parallel software, namely:

(i) modularity
(ii) scalability
(iii) locality
(iv) concurrency

A suitable model for the explicit definition of
concurrency and locality is the task / channel model
defined in [9]. In this model a parallel computation
consists of one or more tasks which can execute
concurrently. Tasks are connected by channels which
represent inter-task dependencies. A task instance
encapsulates a single tread of execution (a program in
the LIP definition), together with some local stack
memory. The task abstraction provides a mechanism for
reasoning about locality: data within a task’s definition
is considered “close” as opposed to “external”, remote
data. Tasks can be mapped to physical processors in
various ways; the mapping technique employed does
not affect the semantics of the program.

5 Advantages of the OO Approach
There are three main reasons for the application of
object-oriented modeling techniques in the life cycle of
a software project:

(i) encapsulation : enables the identification and
containment of system objects and defines their
relationships;

(ii) separation of process from data : an object’s
interface defines its usage without reference to its
data representation;

(iii) code reuse : general behaviour can be packaged
and reused to define addition classes.

Processes which operate on the basis of object
comparison can be defined in general terms, without
any knowledge of how data is represented within a
given object. For example, the code transformation
process of FortPort [8,9] is driven by a knowledge-
based system with rules defining the conditions under
which program transformations may be selected and
applied. A given rule may be guarded by, what amounts

to, a boolean expression involving some form of data
comparison. In the case of loop restructuring, the
comparison is between the characteristics of an actual
loop and characteristics governing the application of a
transformation.

The encapsulation mechanism of object-orientation
enables the definition of interfaces which describes the
general behaviour of an object. A class defining loop
characteristics is essentially defined in the following
way:

class LoopCharacteristics
{ // public & private instance & class
variables

 boolean compare1(LoopCharacteristics lc)
 { // method implementation
 }

:

 boolean compareN(LoopCharacteristics lc)
{ // method implementation
}

}

Instances of class LoopCharacteristics are then used
in the code transformation process without reference to
specific loop characteristic data, or method
implementation:

// assuming A and B are instances of class
// LoopCharacteristics

:
if (A.comparisonMethodX(B))

fire associated rule ;

where 1<= X <= N

5 Conclusions
Abstraction tools such as object orientation provide, not
only a mechanism for modeling the objects which
compose the structure of a system, but facilitate a clear
description of process. This has enabled the creation of
a flexible framework for the analysis and restructuring
of both sequential and parallel codes. Research to date
has been accommodated within this framework which
has encouraged the reapplication of process specific
techniques for parallelisation to the general area of
source program to source program restructuring. The
initial studies on the representation of a given program
in LIP form has also encouraged some thoughts towards
the definition of an associated programming language

syntax called LIPS and the development of an abstract
machine on which LIPS programs may “execute”. At
the moment research in this area is concerned with
simulating the execution of LIPS programs on the
abstract architecture with the view to obtaining profile
data governing “rule of thumb” performance. It is
anticipated that this data will be used to drive the
restructuring process for say, automatic parallelisation.

References:
[1] R.K. McConnell, P. Milligan, S.A. Rea and P.P.

Sage, FortPort: A Migration Tool for Fortran Codes
IMA Conference on Parallel Computation, Oxford,
September 1991

[2] P.Milligan, R.K. McConnell, S.A. Rea and P.P.Sage
FortPort: An Environment for the Development of
Parallel Fortran Programs
Microprocessing and Microprogramming, Vol 34,
1992, pp 73-76

[3] S.A. Rea, P. Milligan, P.P. Sage and R.K.
McConnell, Porting ‘Dusty Deck’ Fortran Codes to
a Multiprocessor Environment
Proceedings of the PLUG III, April 1992, pp 46-55

[4] P.Milligan, R.K. McConnell, S.A. Rea, T.J.G.
Benson and P.P. Sage, Apparently Sequential
Programming Environments for Parallel Computing
Parallel Computing and Transputer Applications,
ISO Press/CIMNE,
Barcelona, 1992, pp 297-306

[5] P.Milligan, T.J.G Benson, R. McConnell, A. Rea
and P.P. Sage, Detecting Components for Parallel
Execution within the Mathematician’s Devil
Microprocessing and Microprogramming, Vol 37,
1993, pp 65-68

[6] P.P. Sage, p. Milligan, R. McConnell, A. Rea and
M.T. McCarney, Graph Management Within the
FortPort Migration Environment
Microprocessing and Microprogramming, Vol 37,
1993, pp 137-140

[7] R.McConnell, P.P. Sage, P. Milligan, A. Rea and
P.J.P. McMullan, Hot Spot Analysis within the
FortPort Migration Tool for Parallel Platforms
Microprocessing and Microprogramming, Vol 37,
1993, pp 141-144

[8] P.Milligan, P.P. Sage, P.J.P. McMullan and P.H.
Corr, A Knowledge Based Approach to Parallel
Software Engineering

Software Engineering for Parallel and Distributed
Systems, Chapman and Hall, April 1996, pp 297-
302, ISBN 0-412-75640-0

[9] P.J.P. McMullan, P. Milligan, P.P. Sage and P.H.
Corr, A Knowledge Based Approach to the
Parallelisation, Generation and Evaluation of Code
for Execution on Parallel Architectures
IEEE Computer Society Press, 1997, pp 58-63,
ISBN 0-8186-7703-1

[10]Smith FJ, Tripathy SR, Sage P.
An Object Oriented Approach to Material Selection,
13th International CODATA Conference on New
Data Challenges in our Information Age,
Beijing, China, Ed. Glaeser & Millward, 1992, pp.
A72-A83.

[11]Smith FJ, Sage P.
The intelligent Selection of Materials from a Design
Specification, Abstract 14th International CODATA
Conference, Chambery, France, 1994, pp. 132.

[12]Smith FJ, Krishnamurthy MV, Tripathy SR and
Sage P., An Intelligent Object Oriented Database
System for Materials Information, Computerization
and Networking of Materials Databases, Vol. 4,
1995, pp. 183-193.

