
Dynamic Management and Execution of Parallel Algorithms on a Java
Multicomputer

PAUL SAGE AND PETER MILLIGAN
School of Computer Science,

The Queen’s University of Belfast, Belfast BT7 1NN,
UNITED KINGDOM

Abstract: - It is clear that writing software for parallel architectures is a non-trivial process. This has encouraged
much research in an effort to provide tools to assist parallel software development. However, while these tools
may cater for architecture-specific problems, they do little for the concept of parallel software engineering, as the
end product is usually neither scaleable nor portable. The introduction of a level of abstraction in the expression of
parallel algorithms can elevate the reasoning process above architectural constraints and assist the production of
more flexible code. This paper outlines an object-oriented parallel algorithm development paradigm based on a
Task and Channel notation, and examines the utilization of Java technologies in the development of a distributed
Java Virtual Machine architecture on which algorithms expressed in this notation may be executed and managed
dynamically.

Key-Words:Java Parallel Distributed Brokerage Agents CSCC'99 Proceedings, Pages:3281-3286

1 Introduction
Producing parallel programs, either by the migration of
existing sequential code or by developing new code, is
an inherently difficult process made mode complicated
by the variety of target architectures available. The
rapid developments in networking technologies and the
emergence of Java as a widely accepted viable cross-
platform language and architecture definition, have
clearly contributed to the convergence of parallel and
distributed computing with Internet and multimedia
technologies. While these developments represent
significant and exciting advances, the added
complexity involved compounds the problem of
producing modular, scaleable and efficient parallel and
distributed algorithms that can accommodate the
current requirements and retain a respectable shelf life.

In the early days of Computer Science,
programmers were restricted to using assembly
language or machine code for software development,
requiring specialised skills, which were possessed by
very few people. The abstract art of sequential
programming, as understood by contemporary
software engineers, was facilitated through the
introduction of compiler tools and high-level
programming languages. Sequential programming
techniques enable computational problems to be

structured, through abstract reasoning, in terms of
sequences of operations (selection, repetition,
statement, and function) without reference to specific
architectural issues. Code written to solve a particular
problem could then be easily ported to any architecture
that had the required compiler and runtime support.

Thus it can be argued that the development and
expression of parallel algorithms can be significantly
simplified by adopting a similar abstract approach. The
desire for a unified methodology for parallel software
engineering is expressed in the work of Milligan [1]
and Foster [2]. Milligan proposed a methodology for
the description of parallel algorithms that exploited the
work of Jackson [3] and expressed the resulting
designs in Hoare’s CSP [4]. Foster describes the
application of Task and asynchronous Channel
abstractions in the expression of parallel algorithms,
together with the definition of an imaginary parallel
architecture on which these algorithms can execute.

Java technologies from Sun Microsystems [2],
which was originally developed for embedded
systems, has capitalized on the popularity of the
Internet to gain increasing attention from distributed
application developers. Java TM consists of a
programming language, a range of tools to support
software development called the Java TM

Development Kit (JDK), and shared-memory
architecture definition, the Java TM Virtual Machine
(JVM) providing runtime support.

Through its widespread availability (in the form of
JVM implementations within all popular web browsers
and in JDK’s for all popular platforms) Java
encourages homogeneity from distinctly heterogeneous
components. This, together with its in-built ability to
dynamically deliver and execute software components,
introduces the potential for the development of a
dynamically modifiable parallel architecture using
Java technologies. This paper examines the
development of Java parallel algorithms using a task
and asynchronous channel representation and their
dynamic distribution and execution on a parallel
architecture based on a number of interconnected Java
Virtual Machines.

2 The Programming Model
To provide a suitable abstract parallel programming
paradigm the problem reasoning process must be
clearly separated from system scheduling activity. The
Task and Channel model is well suited to the abstract
development of parallel algorithms as Tasks are easily
mapped to processors, the algorithm under
development need not be concerned with the number
of available processors, or their configuration. Tasks in
a program may reside on the same or separate
processors, and the Task abstraction upholds the
concept of modular development, with similarities
with the Object-Oriented programming paradigm.
In this computational model a parallel program is
defined to be a set of one or more concurrent Tasks,
the number of which can vary during execution. A
Task encapsulates a sequence of program statements
defining sequential activity, and a set of ports or
Channels that define its interface to its environment. A
Channel is a message queue which enables
communication between cooperating Tasks through
send and receive operations. The send operation is
considered to asynchronous, without delaying the
sending Task. The receive operation, on the other
hand, is synchronous causing the receiving Task to
block until data is available. In addition to being able
to send and receive messages, a Task is able to
dynamically create and terminate other Tasks.
Dynamic connectivity is facilitated through the ability
to send channel information as messages between
Tasks.

2.1 Task Implementation
In this study the Task abstraction is implemented as a
Java class, which inherits functionality from the
java.thread.Thread class, defined within the JDK.

Instances of the Thread class (or subclasses) may
be created and managed as pseudo-concurrent
processes within a Java Virtual Machine. The Task
class is the basic building block for a parallel
algorithm and represents a process with access to its
own local memory. As Java is an Object-Oriented
programming language the class mechanism is ideal
for encapsulating the concept of a Task, providing
information hiding which promotes the notion of
discrete behaviour and locality. The inheritance
mechanism enables the definition of generic Task state
and behaviour governing interaction with the
architecture operating system and other Tasks within
the program through the Channel abstraction.

The realities of providing connectivity and the need
for efficient scheduling is managed exclusively within
the definition of class Task and its interaction with the
architecture operating system. This leaves the
programmer free to express a problem in terms of the
task and channel abstractions provided without initial
reference to hardware considerations. Furthermore, the
class encapsulation mechanism provides a means of
insulating a parallel algorithm implementation from
inevitable platform developments. While, at present,
the system implementation accommodates workstation
cluster topologies, it is only a matter of time before the
Java TM Virtual Machine can make efficient use of
tightly coupled multiprocessor platforms. The Task
and Channel paradigm can remain consistent as far as
the programmer is concerned with the underlying
implementation tuned to suit the runtime environment.

The implementation of a given parallel algorithm
involves creating extensions of the Task class and
defining associated behaviour by implementing a
specific run() method. This defines the entry point for
the execution of any Java thread. When an instance of
a Task is created its constructor method is
automatically called by the system. The constructor of
class Task interacts with the host operating system to
register its existence. Each new Task created, and
subsequently registered, is assigned a unique identifier.
When a Task is created (as part of the execution of
some other Task) there is no guarantee that it will
execute within the same Java Virtual Machine as its
parent Task. It is left to the architecture runtime
environment to determine when and where the Task

will execute. Therefore, any object handles which are
obtained as a result of instance creation cannot
normally be used directly for inter-task
communication. Object handles may, however, be used
to obtain system information relating to a Task such as
the assigned process identifier.

2.2 Channel Implementation
The channel abstraction, which is used to provide
asynchronous communication between task instances,
is implemented by class Channel.

class Master extends Task
{ public Master() { … }
 // Master constructor

 public void run()
 { Slave s = new Slave();
 Channel c1 = requestChannel(s);
 AsyOutStream aos =
c1.getOutputStream();
 // code representing Master task
behaviour
 }
}
class Slave extends Task
{ public Slave() { … } // Slave task
constructor
 public void run()
 { Channel c2 = acceptChannel() ;
 DataInputStream dis =
c2.getInputStream() ;
 // code representing Slave task
behaviour
 }
}

The above code fragments illustrate the steps
necessary to establish channel communication between
two tasks. When an in-stance of class Master is created
and begins executing, it spawns another task, of type
Slave. The Master task then requests the creation of a
communications channel with the Slave instance by
calling the requestChannel() Task method. This
method takes one argument, which is a reference to the
Slave object. It should be noted, however, that this
reference is not used for direct communication. Rather,
it is used to obtain the system-assigned process
identifier and it is this unique identifier that is then
used by the system to establish a connection,
ultimately returned to the caller as a Channel object
reference.

The runtime behaviour of the Slave instance
reflects that of the Master through a call to the
acceptChannel() method. This ver-sion of the method,
which has no parameters, blocks until a request is
made for connection (from any source), returning a
reference to a Channel object once established.
Potential communication problems, e.g. starvation and
deadlock are handled by the Java synchronization
mechanism. Bi-directional data streams may then be
created in both Master and Slave tasks in the following
way:

// Master :
AsyOutputStream aos = c1.getOutputStream();

// Slave :
DataInputStream dis = c2.getInputStream();

In the example above aos is an instance of the class
AsyOutputStream, which may be used to write data of
primitive type in an asynchronous fashion, and dis is
an instance of the java.io class DataInputStream from
which primitive data items are read synchronously,
blocking the reading task until data is available. The
following diagram illustrates the relationships between
class definitions and object instances.

Task

requestChannel()
acceptChannel()

Master Slave

Master
Instance

Slave
Instance

Channel
Instance

Channel
InstanceComms

Channel

Fig. 1. Task and Channel Relationships.

3 Architecture and Runtime Support
Parallel algorithms developed using the Task and
Channel paradigm described above are dynamically
distributed and executed on an architecture based on
the concept of the Multicomputer [5]. The
Multicomputer is constructed from a number of von
Neumann computers called nodes linked by an
interconnection network. Each node is capable of
executing one or more sequential processes operating
on local memory. In addition to reading and writing

local memory, each executing process may interact
with the operating system to establish message passing
connections with other processes within the system.
Access to local memory is less expensive than access
to remote (within other tasks) memory. Consequently,
read and write operations are less expensive than send
and receive, the metrics of which depend on the speed
of the network, the processor and associated software.
The Multicomputer is very similar to a distributed-
memory MIMD architecture.

For this study the Multicomputer model is
translated to a cluster of Pentium-based PC’s
networked using standard Ethernet. Each PC is
equipped with its own Java TM Virtual Machine and
associated system software with deals with the
scheduling and management of Tasks.

In reality, a systems software object called the
Process Management Agent or PMA governs the
distribution of processes between participating
processor nodes. The role of the PMA is to interact
with the user accommodating execution requests, to
manage the creation and dynamic distribution of
processes, and to maintain a systems information
registry describing the state of an executing algorithm.

In this study, the decision governing where a Task
is placed, is made on the basis of a simple load
balancing algorithm. It is envisaged that later versions
of the PMA will be able to make scheduling decisions
based on support from a Knowledge-Based System
containing rules associating Task characterisation data
with node characterization data. In this way the PMA
can assume the role of an “Intelligent Agent”.

The PMA has dominion over a number of Process
Execution Agents (PEA’s) one of which resides on
each of the Java TM Virtual Machines participating in
the resource. Under the direction of the PMA a given
PEA can take delivery of a binary file representing a
specific task, create an instance of the task, and
schedule its execution. This ability to dynamically load
class data and create instances is facilitated through the
Java TM class loader mechanism, found in
java.system.ClassLoader, employed to a great degree
in web browsers which support Java TM Applet
technology. Each PEA has management responsibility
over processes which have been sent to it, covering
binary file downloading and process creation, process
registration, process suspension and restarting, and
process termination and deletion
The architecture PMA maintains a model of an
executing algorithm representing a snapshot of task

activity at any given time. This information is held
within a Registry object containing details on each task
and active channel communications. Instances of the
system class TaskData describe individual tasks, the
details of which include:

 TaskID: a unique, system-assigned identifier for
each task,

 Current Status: loaded, executed, suspended,
terminated,

 ClassName: the filename of the Java TM class
which was used to create the task instance,

 HostIP: the IP address of the host on which the
task is executing.

The next section describes the construction,
distribution and execution of a simple parallel
algorithm on the Java Multicomputer architecture
implementation.

4 Example : Mandelbrot Set Generator
The Mandelbrot Set [4], discovered by Benoit B.
Mandelbrot who coined the name "fractal" in 1975
from the Latin fractus or "to break", is defined to be
the set of all complex numbers c such that:

|z[N]| < 2 (1)

for arbitrarily large values of N, where

z[0] = 0 (2)

z[n+1] = z[n]^2 + c (3)

The Mandelbrot set is usually displayed as an Argand
diagram, giving each point a colour which depends on
the largest N for which | z[N] | < 2, up to some
maximum N which is used for the points in the set (for
which N is infinite). These points are tradition-ally
coloured black. The Mandelbrot set is the best known
example of a fractal, which includes smaller versions
of itself and can be explored to arbitrary levels of
detail. The image generated through the computation
of the Mandelbrot Set is represented by a 2D integer
array, with individual array elements defining a single
pixel value. As the calculation of an individual pixel
value has no bearing on the calculation of other values

in the grid, Mandelbrot generation is a completely
parallel (or “embarrassingly” parallel) computation.

A simple SPMD computation of the Mandelbrot Set
involves partitioning the target grid representing the
image into four smaller arrays. In the example below
the overall grid size of 400 x 400 pixels is divided into
four areas, each of size 200 x 200. The pixel data for
each area is computed by a separate Task, called a
Slave. The overall process is controlled by a Master
task which:

1. Creates the Slave Tasks, assigning each a portion
of the overall grid, and

2. Collects data from each of the Slaves Tasks
updating the display.

Each Slave Task has a copy of a method called
computePoint() which can calculate the value for a
pixel depending on its position. Once a Channel is
established between the Master Task and a Slave Task,
the Slave opens both a synchronous input stream and
an asynchronous output stream.

The Master transmits partitioning information to
each Slave, which then proceeds to calculate and
return pixel data over the area defined. The runtime
behaviour of the Master is defined by the following
code:

class MasterHelper implements Runnable
{ Slave s ;
 int size = 200 ;
 int xstart, ystart ;
 Display disp ;
 public MasterHelper(int x, int y, Display
d)
 { xstart=x ; ystart=y ;
 // set grid partition
 disp = d ;
 // reference to graphical display
 }

 public void run()
 { s = new Slave() ;
 // create a slave task
 Channel c = requestChannel(s) ;
 AsyOutStream aos= c.getOutputStream();
 DataInputStream dis =
 c.getInputStream() ;
 aos.writeInt(xstart) ;
 aos.writeInt(ystart) ;
 aos.writeInt(size) ;
 for(int I=xstart;I<xstart+size;I++)
 for(int y=ystart;y<ystart+size;y++)

disp.setPixelValue(dis.readInt());

 }
}

class Master extends Task
{ private Display d;
 public Master()
 { d= new Display() ;
 }
 public void run()
 { (new MasterHelper(0,0,d)).start() ;
 (new MasterHelper(200,0,d)).start() ;
 (new MasterHelper(0,200,d)).start() ;
 (new MasterHelper(200,200,d)).start() ;
 }
}

The Mandelbrot algorithm was tested on a Java
Multicomputer architecture configured with up to four
Pentium 166 PC’s, each with 32 MB of RAM. The
following table highlights the execution results for the
Manelbrot algorithm with infinity set to 4 and the
number of iterations set to 20, for various architecture
configurations.

Table 1. Mandelbrot code execution times for various
processor combinations.

Processor/Task
Configuration

Time (seconds)

One Processor & four Tasks 4.93
Two Processors & four Tasks 3.05
Four Processors & four Tasks 2.00

4 Conclusions
From its initial launch in May 1995 Java TM has
increased in popularity within the academic and
industrial communities, both as a teaching language
and a viable development platform. The strength of
Java, and, perhaps its weakness, is closely related to its
widespread availability on many platforms. Java is
viewed by many as an enabling technology which will
change the nature of computing, moving away from
the ownership and usage of physical hardware towards
the provision of access to services. However, for the
developer, programming in Java can raise as many
problems as it solves. Rapid developments in Java
technologies have produced variant JVM
specifications, which can potentially lead to
compatibility problems.

That aside, Java provides excellent library support
for concurrency (within a single Java Virtual
Machine), for socket-based network programming, and
graphical user interface (GUI) development. This
enables the construction of functionally intricate
distributed applications with relative ease in
comparison to some other languages such as C++, and,
in many ways, adheres much more closely to the to
Object-Oriented paradigm. The support for Smalltalk-
style Meta-Classes [5], the close relationship with the
Internet, and the ability to load code components (local
and remote), provides the mechanism for the
construction of dynamically modifiable software,
which under intelligent control can react to its
environment to best achieve the goal of maximum
efficiency.

References:
[1] Milligan, Peter, The Synthesis of Parallel

Programs, PhD Thesis, The Queen’s
University of Belfast, 1986.

[2] Foster, Ian, Designing and Building Parallel
Programs, Online Document,
http://www.mcs.anl.gov/dbpp/, Addison-
Wesley Inc., Argonne National Laboratory,
and the NSF Center for Research on Parallel
Computation.

[3] Jackson, M.A., Information Systems :
Modeling, Sequencing and Transformations,
IEEE 3rd International Conference on
Software Engineer-ing, 1978.

[4] Hoare, C.A.R., Communicating Sequential
Processes, C.A.C.M., Vol 21, No.8 pp 666-
677, August 1978.

[5] Sun Microsystems, Inc., 901 San Antonio
Road, Palo Alto, CA 94303 USA

[6] Snyder, L. Type architectures, shared memory,
and the corollary of modest potential. Ann.
Rev. Computer. Science., 1:289--317,1986

[7] Mandelbrot, B. Comment j'ai decouvert les
fractales, La Recherche (1986), 420-424.

[8] Lewis, Simon, The Art and Science of
Smalltalk, Hewlett Packard

