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Abstract: Hybrid automata can be used to describe formaly dynamica systems with discrete and continuous
components. Looking for the existence of certain states in the reachability tree of an automaton is a way of verifying
the satisfaction of behavioural modes of the system that can be related to these states. The method of reachability tree
construction attempts to compute the set of reachable states by successive approximation, starting from a set of initial
states and adding new reachable states until convergence to a state is achieved (Post Procedure). In some specia cases
the reachability construction does not terminate and as a result it fails to find the reachable region of a hybrid
automaton. To solve this problem the reachability verification method has been proposed. According to this method
the user makes a guess for a region of reachable states, by studying the results of the Post Procedure. To avoid
guessing for a reachable region in such cases, a new method is proposed in this paper, for finding algorithmically the
reachable region, which the required state belongs to. The duration d that the system stays at each location of the
automaton is estimated and the relationships that exist between the successive values of each duration are found. As a
result, each variable in each location is expressed in terms of duration. Then, from the relationships found among the
values of duration, an arithmetic progression is derived expressing each location variable in terms of its initial state
and of another variable i, the values of which are natura numbers. This last variable i, represents the number of
iterations of the Post Procedure. The use of the proposed method is demonstrated by its application to the automaton
that describes a water-tank controller.
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method cannot find the required state when the
reachability tree does not terminate and the second

1 Introduction
Hybrid automata are generalised finite state machines,

which can be used for analysing the behaviour of
systems involving mixed continuous and discrete
evolutions of the variables [1]. Exploring the state space
of the automaton that describes the dynamic operation
of a physical system in order to find whether one or
more states exist and are reachable can base this
anaysis.

Two methods have been reported in the literature for
examining whether a state can be reached from an
initial state. The first is the reachability tree
construction [4]. It attempts to compute the set of
reachable states by successive approximation, starting
from a set of initid states and adding new reachable
states until convergence to a state is achieved. The
second is the reachability verification according to
which the user makes a guess for a region of reachable
states that may contain the required one, and verifies its
existence by the use of a theorem prover [4]. The first

might require a large number of trials until the right
guessis made.

The scope of this paper is to present a different method
that finds the reachable region, instead of making
arbitrary guesses. This method establishes relationships
between values of duration in each location of the
hybrid automaton. As a result, the reachable region is
expressed in the form of alogical formula, which is true
for the reachable states.

The paper is organised as follows. In Section 2, the
subsection 2.1 and the subsections 2.2 and 2.3 the linear
hybrid automaton model, the semantics of hybrid
automata, and the existing verification methods are
presented respectively. In Section 3 the proposed
method for finding the reachable region is presented and
through an exampleit is demonstrated its application to



the verification of the occurrence of a specific state. For
this cxample the method of the reachability tree
construction fails.

2 Linear Hybrid Automata And
Reachability Analysis

Hybrid automata | 1], are finite automata enriched with a
finite sct of real-valued variables. In each location, the
variables cvolve continuously according to differential
cquations, as long as the invariant of the location is true,
then when the guard of a transition becomes true, the
control may proceed to another location. Before this, it
resets some variables to new values.

In figure 1, a hybrid automaton is shown, which models
a computcr-bascd controller that opens and shuts the
overflow of a water tank. The automaton has two
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Figure 1. The water-tank automaton.

variables x and y and two locations A and B. The
variablc x represents a clock of the water-level
controller and the variable y represents the water level
in the tank. The derivative of x is always | because it is
a clock. In location A the following controller action is
described. When the out flow of the water tank is shut
the water level increases 1 inch per sec (¥ = 1). In
location B the described action is the following. When
the outflow of the water tank is open the water level
decreasces 2 inches per sec (y = -2). The transition from
B to A represents the shutting down of the outflow
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when the water tank is emptied. The guard y = 0 on the
transition ensures that the transition may be taken only
when the water level is 0; the constraint y > 0 on B
ensures that the transition to A must be taken before the
water level becomes negative. The transition from A to
B (open the outflow) is taken every 3 sec. The transition
is taken whenever x = 3, and the transition restarts the
clock x at 0. If the automaton is started from the state A
A x =y =0, then figure 2 shows how the water level y
changes as a piecewise-linear function of time.

2.1 Syntax of linear hybrid automata.

A convex linear predicate is a system of linear
inequalities of variables. A linear predicate is a finite
disjunction of convex linear predicates. A linear hybrid
automaton consists of the following elements:

%
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a finite set X = {x,, Xy, X3, ..., X,} of variables:

a finite set L of locations;

a fimite multiset of transitions Tc L x L:

for each location £ € L;

» an invariant Inv(£), which is a convex linear
predicate on the variables;

» an activity Act(f), which is a tuple of
differentials laws of the form x = A(? x). The
A( 2 ,x) is called also slope of he variable x at
location £

» an initial condition Init( £), which is a convex
linear predicate on the variables;

¢+ for each transition T € T:

» a guard Guard( t ), which is a convex linear
predicate on the variables;

» a reset Reset( t ) , which is a sct of variables
Reset(t) < X.
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Semantics: A valuation is a function v: X £ R that
associates a real number v(x) to each variable x € X.
Given a variable valuation v and a linear predicate P

Figure 2. A run of the water-tank automaton.



over the variables, v satisfies P, written P(v) = true, if
by replacing in P cach variable x with its value v(x), we
can obtain a truc statement. Given a valuation v, a
location f¢ L, and a non-negative real 5 € R, we write
v +¢ O for the valuation that assigns to cach variable x
in X the valuc v(x) + A( ¢ .x) - .

So the scmantic features of a hybrid automaton are:

* astate is a pair (£,v), where ¢ is a location and v is
a valuation satisfying the Inv( £ )(v) = true;

* for a non-ncgative real & € K, there is a
continuous step of duration & between two states
(¢.v)and (€,v7) denoted (Z,n)% (fv), ifv=
v+e 5

= for a transition o = (£, ")eT, there is a discrete
step of a label a between two states(Z,v) and
(¢ ") denoted (€,0) —Z—( ¢ v°), if Guard (t)( v)
=truc and v" = v[Reset(t):= 0];

= arunis a finite scquence of continuous and discrete
steps (o) > (61,0)) = ...— (€m,vy) such that
the first state ( %o ,vy) is initial.

On the basis of the above the two verification method
arc bricfly presented in the next section.

2.2 Reachability construction

This mcthod performs a symbolic execution of the
hybrid automaton. This approach consists in
successively  approximating the reachable region,
starting from the initial region, and iterating successor
opcrations until thc computation converges. The
continuous successor of a region is the region that
contains all the states that can be reached from states,
by a single continuous step. Suppose that variable x
cvolves in location ¢ according to the type x'= x +¢ 6.
It can be shown that the elimination of the duration &
can be performed, and it again produces a linear
predicate in variable.

Rcachability construction consists in iterating the
tollowing Post procedure:

Input: sct A of linear regions.

Output: sct B of linear regions, initially empty.
For cach lincar region <€ P> in the sct A, for each
transition ( £, ¢ ") with the origin ¢:

* et Py be the intersection of P with the guard of
transition (€, € ")

* let P; be the projection of P, over transition ( ¢ , ¢ )

= let P; be the intersection of P, with the invariant of
gl

= et P, be the extension of P; at state ¢’

= let Ps be the intersection of P, with the invariant of
gl

* add <?¢ Ps>toset B

The Post*(l) is the set of regions by applying k times the
post operation to the set of initial regions where |
denotes the set of initial region. The reachablc region
Post*(I) is the countable infinite union

V.icn Post(D

If for some k € IN, it is the case that
Post"'(I) < Post*(l)

then reachability construction terminates in finitely
many steps. This does not happen in general for lincar
hybrid automata.

2.3 Reachability Verification

Reachability Verification method [4] can succced in
cases when reachability construction fails. Reachability
verification consists of two steps: first, to guess the
reachable region; second to venfy that the guess is
correct. A suitable guess can be fount using simple
heuristics, and the verification can be performed by
induction, using a theorem prover. It appears that when
reachability construction does not terminatc, the
reachable region of a hybrid automaton can still behave
in a regular manner.

A typical situation is to guess a reachable region written
using only one natural-number variable p that rcpresents
the number of iterations of the Post procedure. In this
case, the guessed region is called directly inductive, and
if for all p € N, Post*(I) = R(u), where R(p) is the
reachable region involves some new variables (in this
casc the variable p), then the guessed region is correct.
In other situations the guessed region may not bc
directly inductive, but it can be made so by introducing
new variables (one of which represents the iteration
number) and constraints connecting the existing and the
new variables. Finally, even when a guess is not directly
inductive, it can be useful (as an invariant of the
system) to prove safety properties.

In the water-tank automaton (figure 1) a suitable gucss
1s the following [3]:
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A lincar hybrid automaton is additive-inductive [4], if
its rcachablc region can be expressed as a set of pairs
{<? Pe¢>| ¢ € L} such that for each location ¢ € L,
P¢ 1s a formula of the theory ( IR,IN,+,< ) in which all
natural-number variables are outermost existentially
quantificd.

3 The Proposed Method Of Computing
The Reachable Region

In the above scmantics has been mentioned that there is
a duration & between two successive states. In the
rcachability construction approach, the duration is
climmnated by producing a linear predicate in variables
X1, X2, X3, ..., Xn

It 1s observed that the values that the duration of each
location takes at different iterations satisfy a certain
rclationship.  Furthermore, each variable can be
expressed in each location as relations of values of the
duration. In this way, the reachable region can be found
which involves a quantifier over a new natural-number
variable 1 (where 1 is a counter that is increased by 1
after a full turn of an iteration). Then, as it has been
described in the reachability verification approach, the
identificd rcachable region can be verified with the
thcorem prover PVS [5].

Our mcthod is restricted to additive-inductive hybrid
automata, because obscrvations on a number of studied
cases have disclosed that the sums of the duration
valucs follow an arithmetic progression. By using the
proccdure for the reachability construction, which has
been alrcady described in section 2.2, however retaining
thc 6 duration (without eliminating it), the following
approach 1s proposed for finding the relationship
between successive duration values.

I. during the first iteration the maximum value of
duration for cach location is found;

2. the rclation for cach location is found that holds
between values of duration;

3. if these rclations remain the same for a number of
itcrations, it 1s assumed that the generalised form of
rclations is the same for future iterations in the same
location;

4. as a result of the above assumptions, in cach
location each variable is expressed on the basis of
values of duration and on initial state;

5. finally, arithmetical progressions arc used to
transform the above expressions and to obtain the
desired reachable regions.

The automaton of the control system of figure 1 belongs
to the additive-inductive classification and the
reachability construction does not terminate. In order to
check whether at the timing instant x=3 the level of the
tank will be at y=2 we need to verify that the automaton
state T = (A A x =3 Ay = 2) can be reached from the
initial state S = (A A x =y = 0).

The application of the above method leads to the
following results:

Step 1:

In the first iteration of each location, the maximum
duration in location A is 3 and in location B is 3/2.
Then, in location A the following relationship will hold:
. X-X0M=%=023x-dnu=0>x=56n

' y-you =Yoo= 0= y-61=0= y=6n

A transition from location A to B will occur when the
value of variable x becomes 3. Consequently, the
maximum value of duration §;, is 3.

In location B, it will hold:

' X-x02=%=0>2>2x-5u=0>x=452

" y-you Tyo=3 2 y+26n=3=y=3-262

A transition from location B to A when y becomes zcro.
Therefore, the maximum value of &, is 3/2.

Step 2:
After five iterations, we observe that the rclations

between values of duration remain the same, as the
followings:

o1 =208 12+ 8,=3
812=282 B3+ 8,n=3
O13= 282 Oiut dn=3
614= 284 Ois+ 8u=3



Step 3:
After five iterations we assume that the above
relationships  remain the same for each location.
Expressing them in a general form we have:
for 121

811 = 282|

O =3 -3
The ¢ denotes the duration in location ¢ where i is

the number of itcrations. From the above equations one
can derive that:

3-0n-
oy=22"1 (1

Step 4:

Taking into consideration the guard condition for the
transition from A o B onc can easily see that:

X=0y,+98,andy = §,. 2)
In location B the variables are:
x=0dyand y = &),- 2 ds. 3)
So in location A from ¢quations (2):
=8y Y
and in location B from equations (3):
y =08 — 2x.

Although these expressions include the initial state as
was mentioned in step 4 it is not obvious as x =y = 0.

Step 5:

The cquation (1) can be rewritten as:

As a result in location B we obtain the following
cquation:

y+2x=3-(1- ( ))—2+( ,)I

1

and in location A ;

(_l)i—l

Ge=y+-"—5

AX<3),

because x < 3 is an invariant in location A.

Therefore, the reachable region will be:

i
. Sza=(B,y+2x=2+%)

I—
u Sv,l (A X = V+1'—&_

AXZ3)
211

From the above it becomes obvious that the final statc T
can not be reached from the initial statc S. Therefore,
the way the tank level is controlled can not guarantce
the stabilisation of the tank level at the value of y = 3.

4 Conclusion

A new approach to the problem of identyifying the
existence of specific states of hybrid automata has been
presented. The method is applicable even in cases
where the reachability tree of the automaton does not
terminate. Compared to other methods, this method
eliminates the need to make a guess for a reachablc
region. The idea is to trace algorithmically a rcachablc
region of a hybrid automaton by using the values of
duration & in every location and finding the relations
between them.

This method has been applied to other applications of
hybrid automata, as the example with the leaking gas
burner automaton [1], the bouncing-ball automaton |3],
and chemical reactor-controller automaton |2].
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