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Abstract:-Cryploresistance of a broad class of cryptographic algorithms is determined by their corre-
spondence o some special criteria of bit transform Boolean functions being implemented in these al-
gorithms. Onc of such criteria is a strict avalanche criterion (SAC). Obtaining of Boolean functions
satisfying this criterion is an important constituent of cryptoresistant algorithm design. The existing methods
of SAC-function obtaining which utilize in the explicit or implicit form the truth tables of a function being
formed are practically useless for synthesis of SAC-functions from a great number of variables, because they
demand memory capacity in proportion to 2" (n is the number of variables).

This paper presents investigation of Boolean SAC-function properties and suggests a new method for
function obtaining without making use of the truth tables. The method deals with the algebraic normal form
whose storage demands memory capacity of many orders lower comparing to that for truth table storage. The
mcthod is helplul both for obtaining ordinary SAC-functions and for synthesis of high-order SAC-
functions. The formalized procedure for construction of zero and higher orders SAC-functions is ¢xpounded

in details, examples of functions design are given.
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1 Introduction

A mathcmatical problem which is insolvable with
analytical methods and whose only practical way to
be solved is scarching provides the basis for all
cryptographic algorithms. So, the problem of large
number factoring lies in the foundation of the well-
known algorithm RSA. The algorithm ElGamal gets
its sceurity from the difficulty of calculating discrete
logarithms in a finite field. Security properties of
cryptographic schemes based on combination of
confusion and diffusion are determined by an
analytically intractable problem of finding the roots
of a system of nonlinear Boolean functions. Such
algorithms as DES, IDEA, SHA and many others
widespread in practice belong 1o that class. In this
casc  “break”™ of a cryptographic algorithm is
cquivalent to solution of the corresponding system of
nonlincar Boolean equations. The only practical way
tor nonlincar Boolean equations solution is search-

ing. The search area may be decreased significantly
by application of different expedients based on
taking into account the special features of Boolcan
functions constructing the system of nonlincar
Boolean equations. There is a certain identity be-
tween the methods for decrease of scarching at
finding the roots of a system of nonlincar Boolean
equations and the methods for break of
cryptographic algorithms. For example, the known
method of cryptanalysis [3] is identical in fact with
the method of lincar approximation at finding the
roots of nonlinear Boolean equation systems. The
method makes it possible to diminish the scarch arca
if the Boolean functions possess low non-lincarity.

If Boolean functions constituting a systcm
equivalent to a cryptographic algorithm satisfy
certain properties, the search arca at solution of the
corresponding Boolean equation systems can not be
diminished and, consequently, efficiency of all break
methods will also be minimal. Obviously, such



cryptographic  algorithms  will
resistance to breaks.

Propertics ol Boolean  functions  providing
maximal resistance to breaks were determined in the
result of S-boxes DES [1,4,6] investigation and
formulated as the following criteria: a function must
have a high nonlincar order, must be 0/1 balanced,
complete and satisfy a strict avalanche criterion.

The  Strict  Avalanche Criterion (SAC) was
introduced by  Webster and  Travares [6] in
connection with study of design of S-boxes. A Boo-
lean  function is  said to satisfy SAC if
complementing a single input bit results in changing
the output bit with probability of one half.

be of maximal

2 Problem Formulation

Development of methods for obtain in Boolean
functions with propertics mentioned above is an
essential - problem  of  cryptographic  algorithm
working-out.

Formally, a Boolean function {(x,,...,x,) satisfies
SAC i the g(xy,....x)=t(X), ... Xi oo, Xn)@A(X1, .0 X5
®1,...,x,) is balanced for any i€{1,...,n}.

Forre |1] extended the concept of SAC by
defining  higher order strict avalanche criteria. The
Boolean function {(xy,...,x,) is said to satisfy the
strict avalanche criterion of k  order (designed as
SAC(K)) il any function obtained from f(x,...,x,) by
keeping any 4 input bits constant satisties SAC.

A number of methods for solution of this problem
has been put forward by now. In particular, SAC-
functions arc supposed to be obtained by application
of Walsh transforms [1]. In study [2] SAC-functions
arc  suggested o be  obtained from  matrix
transformations. All these methods imply explicitly
or implicitly utilization of the truth tables. This
impose a processing restriction on the number of
variables. So, a SAC-function from 100 variables
can not be obtained by the known methods because
it will demand memory capacity of 2'™ bits that is
impossible for implementation in modern computers.
Therelore, methods for SAC-function design which
do not make use of the truth tables but operate only
with the function normal algebraic form should be
worked out. Such a method was suggested by
B.Prenecel |5], however, the functions formed with its
application have low non-linarity and the maximal
degree of the terms is equal to 2.

From the tend to enhancement of cipherblock
capacity the problem of obtaining nonlincar SAC
functions of a great number of variables appears to
be one of the central o design of cryploresistant al-
gorithms.

3 Problem Solution
The theoretical basis for the suggested approach
to construction of an analytical representation of
Boolean SAC-functions is the following theorem.
Any Boolean function f(x,...,Xx,) may always be
represented in the form:

S, e X=X @i(X s, e
®\|-’i(xl,-“axl—l>xl+l"“

Xi-1sXit1s » n)@
,Xn),l—l,..., (D

Theorem: In order a Boolean function f(xy,...,x,
to correspond to SAC, it is necessary and sulficient
that each of n functions @i(X),....Xi1,Xis15----Xn)s
i=1,...,n be balanced.

Proof: By definition, the Boolean [function
f(X1,...,Xy) corresponds 1o SAC if for any i=1,....n
the Boolean lunul()n
F(X15 e Xy oo X))@ f (X1, ..., 18X, .00, %) 18 balanced

and, with making use of (1), it may be transformed
into the following form:

f(x15.n Xn)@f (X1, ..., 1®X, ... ,Xy)
=X (p,(xl,...,xl_l,xm,..., @
OWi(X 1, e »Xi15Xig 15 or s X0 )D

@(1@X:) [ @i (X15 o Xi 1, Xi 15 00 X)) |
@Vi(X1, oo s Xi15Xit 15 oor sXn)=
=Qi(X1, -, Xi-1,Xit15 -« - Xn)

Thus, the condition of the Boolean function
f(x1,...,x,) satisfaction 1o SAC is equivalent to the

condition of balansedness for all n Boolcan functions
QX 1, e »Xii1,Xis15-,Xn), Which is what had 10 be
proved.

Making use of the theorem above, the following
practically important corollary may be proved:

Corollary :The Boolcan function
F(Xy5 e, Xn)=0(X 1, ..., X)X, ... ,Xn)  corresponds  to
SAC if the function ¢(xj,...,X,) corresponds to SAC,
and the function &(x,,...,X,) is lincar or, what is the
same: addition of a linear function to a SAC-one
does not break correspondence of the latter to SAC.

Proof; If the Boolean function ¢(x,...,x,)
corresponds 10 SAC, then n representation of the
form (1) may be always indicated:
O(X 1y wer s Xn)ZXiP; (X1 ove 5Xi 15 Xis 1500, X )
@Y, (X1, ee 5Xi-15Xis 15--Xn), 1N this case cach of n
functions (pi(Xl,...,Xi_l,Xi”,...,Xn), i=l,...,l1, I
balanced on the set of variables X, ....Xi |, Xi1,..-.Xn,
as it follows from the thcorem above. The function
f(x1,...,X,) may also be given by n representations of
the form:f(Xy, ....Xn)= =X Qi(X1, o, Xi 1, Xix 1500r X )D
DYi(X15 oo 5Xi15Xi4 T5ee0rXn)- Since the function
8(x1,...,xn) is lmuar, it does not comprise products

and, consequently, its addition to §(x,...,x,) will not
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change any ol n functions @;’ (X1, ..c.Xi 1, Xit1,---Xn),
1=1,....n (only the function g’ (Xy,...,Xi.1, Xis1seeerXn)
will be changed). Hencee it is true for all i=1, ...,n that
QX 10 e o Xi 15 Xis oee o Xn)= =@ (X 15 eeuXi 1, Xig1se--Xq) and
as a result all the functions @i(X1, ..., X115 X4 15e.-,Xn) O
representations (1) of  the  Boolean function
J(x1,....xy) appear 10 be balanced in view of the
balancedness of the functions @’ (X1, ... ,Xi.1,Xis15e--,Xn)-
This, in accordance with the theorem proved above,
implics that the function f(xy,...,x,) itself corre-
sponds to SAC.

Starting from the theorem given above, the
problem ol SAC-function formation is transformed
into the problem of finding a system with n balanced
Boolcan functions of n-1 variables:

D10 o x)=2" @)

(X X)C U

where U, is the set of 2™ all the possible values
ol the Boolean variables x,,....Xi.,Xii1,....Xp. The
resulting Boolean function that corresponds to SAC
is presented in the form:

IV(Xh «Xn):V Xi'(Pi(xla e wxi~laxi+|a'">xn) (3)

The problem of finding system (2) of the balanced
Boolcan functions without making use of the truth
tables is rather a complicated one taking into account
that the Boolcan functions compiling them are
dependent.

For practical obtaining of the system (2), special
cases ol balanced Boolean functions should be
applicd when the fact  of balansedness may be
proved by analysis of the normal algebraic form of
Boolcan functions. A number of corresponding
methods may be developed for construction  of
system (2) of balanced Boolean functions and further
on of the SAC-function according to an approach
utilized for obtaining balanced tunctions.

For analytical construction of a system of
balanced Boolcan functions the known concept [5] is
applied according to which the Boolean function
O (X1 Xn)~ —E(X 5o, X )® @Y(Xky1,--- Xp) 15 balanced
if the function &(x,,...,x,) Is lincar. This concept
lecads to the other onc that the Boolean function
O (X 10 Xy)— E(X 1,00 X)D @x(Xs1, -0+ Xn) 18 balanced if
the function §(xi,...xy) is balanced on k Boolean
variables.

The cessence of the method suggested for
obtaining system (3) of balanced functions consists
in performing the following sequence of actions:

I. The sct of variables {x,,....x,} is divided into two
subscts O={x, ... x} and Q{xepp, ... X, ).

2. A certain relations A which assigns cach element
of the set Q to one of the elements of the set Oy =
A(z), z€Q ,y&0 is given arbitrary. Substantially the
mentioned relation prescribes the set of clement
pairs of the Q and ¥ scts.

3 The number k of Boolean functions &y(xi,...,Xy

1sXhtls oo ,X[,I,XH,...,X”), 1<h<k, k+1<t<n, s
constructed, with h=A(t), in the form:

E_:h(xl’ e 7thl7xh+19 ses 5X171’X1+s“'7xn)= =

=()\’h(xla cee s Xh 1 XDt 1 -ee ’Xk)®

OU(Xks 15 -+ Xt 15Xt4504,Xn) 4)

functions  pa(Xs1y v sX0-1Xes 15 - -Xn) - and Ap(Xy, . Xy
1,Xn+15 - ,Xk) Deing given arbitrary.

4. The number of n-k of Boolean {functions is
constructed, with u=A(q), in the form:

&q(xu’xkﬂw .. 7xq-]7Xq+ls---7xn)=

=5q(xk+|’""xq—laxq+]7'“1xn) (5)
where 0, (Xis1s o Xgo1Xge1s----Xn) 1S an  arbitrary
function determined on the set of variables

belonging to the set € and independent of x,,.

5. The SAC Boolean function to be found is obtained
by combination through OR of all the conjunctions
of variables x; and the partial balanced Boolcan
functions &, i = 1,...,n: obtained carlier:

2éhf(xl, wsXn)=V Xn En(X1s eee s Xn1
h=1,....k

Xt 1y voe s Xt 15X s oo Xn) Ve
q=k+1,....n

e VX &g (XX ya 15 on 5 Xqe 15X g 5o-2Xi) 6)

Let us show that the Boolean function formed in
the manner described above corresponds to SAC, i.c.
all the functions @’ (X1, -, Xi.1sXis (se-sXn)s 1 = 1,...,n 00
the expansion of the Boolean function f(x,....x,) in
accordance with formula (1) arc balanced. The
resulting  SAC-function f(xy,...,x,) by virtue of
condition (6) comprises necessary, as an added, the
product of the variable x;(j =1,....k) by the function
Wi(Xke 15 oo o Xe-1,Xe4 15 -0 ,Xn) @8 well as it comprises the
X;'X¢ product determined by cquation (5), where
J=A(t). Except the mentioned product the terms
comprising the product of the variable x; by the vari-
ables belonging to the set Q are absent in the normal
algebraic form of the function f(x,,...,x,). Reasoning
from this, the functions @(X,....X.1,Xjs15e-,Xn),
j=1,....k may always be represented as the sum:

QX 15 eee s X1y Xt 1yee s Xn)=
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=Gi(X 15 e X1 X 1y, X))@
®}‘|’j(xk*l""’xblﬁ Xit1seers Xn)®)(j (7).

Because the functions ¢i(Xy, .. ,Xj.15 5Xje150-,Xk) and
(Xks1s - X 1.X1s 15 - ,Xn) dO not depend on the linear
function x;, the function @;*(Xy,...,Xj.1,Xjs15--.,Xn) 1S
balanced. In the similar way, in view of the fact that
the resulting SAC Boolean function  f(xy,...,Xp)
contains necessarily the product x,°x,, with u=A(q),
and does not contain the terms in which the
mentioned product would be contained (this is the
consequence  of  the fact that the product
Xu Hi(Xko 15 ooe X 15214 15 - »Xp) cOmprised in the function
f(xi,....x,) does not contain the variable x,, the
functions @y(Xy, ..., Xq-1,Xge150-Xn), q=k+1,...,n, may
always be represented  as the sum modulo 2 of the
variable x, and a function independent of

qu(Pq‘(x Pooeee
B Pq(X1, ..

7X(| l’xq+17“~5xn):xu®
vxu—lvxu’---vxq—laxtﬁ-l,-nvxn) (8)

With  respect to the above indication of
balancedness, the Boolean function @4(x, ... X,
1 Xqs 1----Xn) 18 balanced. Thus, it is proved that all the
functions ¢;, i=1,...,n, of the function representation
f(xy,....Xy) in the form (3) arc balanced, and ac-
cording to the basis thcorem proved, it means the
correspondence of the Boolean function f(x,...,Xy),
being the result of the suggested method, to SAC.

The method suggested provides obtaining the
SAC-function possessing the maximal degree of the
terms cqual to max(n-k,k). As it follows from the
analysis of the maximal value of the term degree in
expressions (4) and (5) for the partial generating
functions &, 1=1,...,n, the maximal degree of the term
in the subfunction Ay(Xy, «.. ,Xp15Xn4 15 - »Xi) 1S equal to
k-1 (for this purposc the shown function must
comprisce the term Xy°X2 ... *Xp1"Xne 1y .. ' Xg), and the
maximal degree of the subfunction py(Xis1, .- X0,
Xty lsee-»Xn) 18 cqual 10 n-k-1 basing on the similar
rcasonings. Accordingly the maximal degree of all
the functions &, h=1...k, equals max(k-1, n-k-1). The
maximal degree of the term for the functions &,
q=1...n-k, defincd by expression (5) is determined
by the maximal degree of of the subfunction
Oy(Xka 15 oo 1 Xy 1:Xge 15 -+ Xp), Which is equal to n-k-1.
For this purpose, the term which is the product of all
the  variables except  Xg, must be
compriscd in the normal algebraic sum of the
mentioned function. Since each of the function g,
i=l..n, cnters into the resulting SAC-function
f(xy,...,x,), according to (6), as the product by the
corresponding variable x;, the degree of its maximal
term makes

Xk+1s e+ 9Xps

max(n-k-1,k-1)+1=max(n-k,k). Evaluation of non-
linearity of the SAC-function being generated by the
suggested manner may be carriecd out in the
following way. According to the thecorem on the
lower bound of Boolean function non-lincarity,
proved in the study [2], if Boolean function may be
represented in the form J(X1, ., X0)=
=W(X1y oo Xn)DT(X1, ... ,Xn),Where  1(x),...,X,) 15 the
term of degree s which is not comprised in the Boo-
lean function p(xi,...,X,), then non-lincarity of the
Boolean function N(£)>2"*. Conscquently, the lower
bound of non-linearity of the arisen function makes
2" in the case of the SAC-function being generated
in the correspondence with (6) because any of the
terms X,'Xs,0< p<k, k+1<s<n, where x;=A(x,), ol the
degree s=2, being presented in the normal algebraic
form of the function f(x,x,,...,X,) enters into none of
other terms of the latter, that has becen demonstrated
above at proving the correspondence of the function
f(x1,X2, ... ,Xy) to SAC.

The suggested method for SAC-function
generation may be illustrated by the following
example of obtaining the SAC-function of 6
variables. Let k=3 and the sets ¥ and Q be given re-
spectively in  the form U={x;x;x3} and Q
={X4,Xs,Xo}. Let us set the following relation A which
performs the one-to-one mapping of the set Q ele-
ments into the sct O x;=A(x4), the x:-A(Xs),
x3=A(x¢).  Partial  generating  functions  in
correspondence with (4) and (5) may be formed in
the following manner:

&1=X2 X3®X5"X
Er=X DX DX4'Xg
E3=x1®Xs
E4=X | ®X5'Xq
Es-X2Px4
Ee=x3®x;s

The resulting SAC-function f(x,...,Xs) is formed
by combining through OR the conjunctions of the
partial generating functions presented above onto the
corresponding variables, according to (6), in the
form:

(X1, ... ,X6)=X1"X2@X2'X3PX " X3DX 1 X4DX 2 X DX 3 X 5D
@DX4 XsDX3 X, DX 5 XsDX X2 X3DX X5 XoDX2" X5 X,

The maximal degree of the terms comprised in the
normal algebraic form of the gencrated function
f(x1,...,Xe) is cqual to max(n-k,k)=3, while non-
linearity N(f(x,...,X¢))=24 and exceeds the lower
non-linearity bound determined above, which is
equal to 2"2=16. It should be pointed out that non-
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lincarity of the SAC-function obtained is close to the
maximal possible non-lincarity for 6 variables equal
to 28. The proved theorem and evidence of Boolean
function balancedness may be used as the basis for

high  order  SAC-function generation method
development.
Below the method of m-order SAC-function

generation is presented.

The  essence  of  the  method
performance of the following actions:

I.The sct of variables {x,...,x,} is being deviated
into two subsets: V={x,....xx} and Q={xy,1,...,Xn},
the number of variables in each subset must be not
less than m+1,

2.The set © of pairs of variable which do not
belong  simultancously 1o the set ¥ and Q
XX >E0, rE{l,.. .k}, q€{k+1,...,n} is being
determined, in so doing the number of pairs into
which ¢very variable x,,...,x, enters must be not less
than m+l and the pairs themselves which are
comprised in the set ® , must not recur.

3.SAC-function of the m-th order is being formed
in the following manner:

consists in

ll(X Iy ver ,X"):

:Exd'xp(ﬁé(x1,.,Xk)®u(xk,1,...,xn) (9)

V<xoxp>CH

where &(xy,...,x,) and p(X4y,...,X,) are arbitrary
Boolcan functions determined on the variable sets O
and € respectively.

Let us show now that the Boolean function
{(xy,...,x,) formed in such a manner corresponds to
SAC of the m-th order. To meet this demand [1}, a
Boolcan function must possess the maximum of
conditional entropy, i.c. it must correspond to SAC
of the zero order, correspond to SAC of the (m-1)
order and  any function ¢y km(X1, e s Xnm)
determined on n-m variables, into which the initial
function f(x,,...,x,) is transformed by setting m
variables Xy, Xia, oo Xim, K1, Ko, .. kn€{1,... ,n} to
zero or one, must also correspond SAC. Let us show
first that the initial function f(xy,...,x,) corresponds
to this criterion. For this purpose let us present
f(xy,....x,) in the form (1) and consider the function
Qi(X1s e Xi 1 Xix 15--Xk), 1=1,...,k, which with account
for (9) has the form:

(P.(X ly=e- sxivI’XiHa--"xn):

:EXIG)‘;i(X [EXEN 5xi—laxi+|7'“,xk)7 1= ] 79k3
VX <X, X >CH

(10)

In this case every x, included in expression (10)
does not belong to the set ¥, ic. x,&Q on the
strength of the fact that the set ® comprises only
pairs of variables belonging to the different subsets.
Thus the function @i(Xy,....X;.1,Xis15-..,Xs) TCPIESCNLS
the sum modulo 2 of a linear function (that is the
sum of variables x,) determined on the variables of
the set Q and of the function (X, ... ,.Xi |, Xis 1,0, Xk ),
determined on the variables belonging to the set ¥,
Le. it is balanced. In the similar way the bal-
ancedness property of the functions @i(x,,....x;
1>Xis15.-,Xn) for i=k+1,...,n may be proved. Thus, it is
proved that the f(xy,...,x,) corresponds to SAC.

Let us show now that any function
i1, ku(X15 e s Xnyw) USmM, determined on n-u variables,
into which the initial function f(x,...,x,) transforms
through setting u variables Xy 1,Xy2, ... Xk, K1,Ko, ... Ky
€{1,..., n} to zero or one possesses such a property.
To do this, let us represent the function ¢ in the form
(3), supposing that s of the e¢xcluded variables
belong to the set ¥ and v of those belong to the set
Q, 0<s<k, 0<v<n-k, s+v=u. The set of the excluded
variables is denoted through
E:Xi UxioU U =Eii, k(X h=1, o X0EE) =X 0ik
,.__,ku(Xh,h=1,...,j-l,j+1,...,ﬂ, ,X},%E) @
(xp,h=1,...,j-1, j+1,....n, X, &Z)

Let us consider the function @y . k(Xp.h=1, ... j-
Lj+1,...,n,x,&=) for j<k, which may be represented
in the following form:

Qixi,. k(Xnh=1,.3-Lj+1, . nx EE)=
=Exe®pj,kl,...,ku(xhah:l,j'l’j+la-’k9xh €=)
X EW;

The set W; comprises the variables satisfying the
following conditions:

XEW; < XX >EQ, X &£=. It is also apparent that
x.EQ. Let us show that the set W#@. Consider the
variable x":x’€Q, <x’ x;>€0: if x’EE, two versions
are possible: x’=0 and x’=1, by the first version the
term x’+x; is excluded out of ANF of the ¢ function
of being investigated, and by the second version this
term is transformed into the term x; which being a
linear one, according to the Corollary proved at the
beginning of the article, does not effect the SAC-
property of the initial function and may be also
omitted. Thus, if x’EZ ., it need not be taken into
account at analysis of the function ¢ balancedness.
Since, according to the condition of subscts 1) and Q
formation, the number of variables in cach of them is
more than m, i.e. more than the maximal amount of
the variables being excluded, while v is less than the
number of variables entering into the set of Q. so a
variable x. such that x.&= may be always found.
Further on, the method under consicration supposes

Wikl.... ku
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the existence of the number of the pairs <xg,x;>E0,
which also more than m+1, so a variable x, such that
<X, X>E0 and at the same time x,E€Q will be always
found. Conscquently, the set W; #@. Then the
function @ k(Xn, h=1,...j-1,j+1,....n, x,&Z) will
always have the linear constituent subfunction de-
termined on the variables of the set Q and the other
constituent subfunction that does not depend on the
variables of the mentioned set, and it means that the
function being  investigated  is  balanced. The
balancedness of the subfunctions corresponding 1o
the variables of the set Q may be proved by quite the
similar rcasoning. According to the theorem proved
at the beginning of the article, the function ¢ under
investigation is a SAC-function. Correspondingly,
the  Boolcan function {(x,...,x,) constructed in
conformity with this technique is a SAC-function of
the m-th order.

Non-lincarity of the function generated in such a
manncr also exceeds 2", and the maximal degree of
non-lincarity, providing the optimal choice of the
subsets ¥ and Q, makes 2™™ !,

To illustrate the considered method intended to
obtaining  SAC-functions of the m-th order, an
cxample of first order SAC-function formation from
6 variables is given below.

According to the procedure described above, each
of the subscts 1) and Q into which the set of variables
is divided must comprisc not less than n+1=2
variables. Let U={x;,xo} and Q={x;,...,x¢}. Deter-
mine the sct of pairs of the variables belonging to the
indicted subscts in the following way:

O <X ,X 3>, <X, X >, <X, X 5>, <X |, X6>, <X,
X3>,<X5,X4>,<X2,Xs>,<X2,Xe> }. The function &(x1,X5)
may bc taken arbitrary or even omitted. The function
&(Xa,....Xe)  may  be arbitrary  set  cqual to
X3 X4 Xs@X 3 Xy X, @X3'X4'Xs5'X.  Then the sought-for
SAC-tunction of the first order may be represented
in the following form:

(X1, ... X0)=X 1 X3®X X @X | XsDX "X, BDX0* X3@BXo X4 DX
XX X DX 3 Xy Xs®X 3 X X DX 37X 4" X5 X

The function obtained corresponds 1o SAC of the
zero and first orders and has non-linearity equal to
20, the degree of non-linearity is equal to 4.

4 Conclusion

Removal of the important for practical problems
processing - restriction on - construction of SAC-
functions from a great number of variables inherent
in the existing methods for synthesis of this class of
Boolcan functions may be attained by working-out
ol a problem solution strategy which does not

demand storage of the truth tables in the explicit or
implicit manner in the memory. This method must
operate with the normal algebraic forms of Boolcan
functions that needs memory capacity of scveral
order lower. The properties of the normal algebraic
forms of SAC-functions are studied, it is shown that
the problem of such function obtaining may be
reduced to construction of a system of balanced
Boolean functions. A method for solution of the last-
mentioned problem has been suggested that made it
possible to work out formalized procedures for ob-
taining the normal algebraic forms of SAC-functions
of the zero and higher orders with high non-lincarity.

The investigation carried out extends in cffect the
principles set forth by B.Prencel [5]. Comparing 1o
the basic concept, the method suggested makes it
possible to increase the non-lincarity characteristics
of the SAC-functions being obtained. The ex-
perimental study carried out has shown the practical
uscfulness of the developed methods for obtaining
Boolean functions from 100 and a greater number of
variables.
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