
High Storage Utilization of Hash Memory by Reducing of Information
Redundancy for Hashing

E.G.BARDIS*, N.G.BARDIS*, A.P.MARKOVSKI*, A.K.SPYROPOULOS**

* Department of Computer Science
National Technical University of Ukraine

(Kiev Polytechnic Institute)
Glyfada-Athens

Tainarou 66
16561

HELLAS
** Department of Mathematics

University of Athens

Abstract:- The article presents a method of hash memory utilization efficiency increase, which is based on
excluding of information redundancy inherent in hash-addresing. It has been shown theoretically that a part of
information contained in the key is duplicated in the hash-address code, and the technique that decreases
substantially this redundancy is described. This technique utilizes signature storage in the hash-memory,
instead of whole keys storage in the auxiliary memory. The main advantage of the method consists in decrease
of memory capacity required. The practical application of this technique makes it possible to decrease the
hash memory capacity, to increase the searching rate and to provide security of the information stored in the
hash memory.

Examples illustrating the method and technique suggested are also presented.

Key words:- information theory, information redundancy, hashing, hash memory, hash signature, auxiliary
memory, database management systems. IMACS/IEEE CSCC'99 Proceedings, Pages:3101-3105

1 Introduction
Efficiency of searching is important for total system
performance. Thus, the choosing of a good
searching technique can save a lot of time in the
retrieval operations.
Hashing is an efficient and widespread information
retrieving technique because its retrieval time is
much less comparing to the other methods and this
time does not depend on the key numbers among
which the searching is being carried out. Hashing
ensures effective searching both in static and
dynamic key massifs. The idea of hashing consists
in the fact that the address at which the key is stored
in the memory is a key code function. At key
recording into the hash memory, first its hash-
address is being computed, and then, the key-code
and the information related to this key are being
recorded in to this hash-address. At searching, the
hash address is computed by the key-code, the code
is being read from the hash memory and compared

with the received key-code and then, if the codes
have coincided, either the information related to the
key or the information file address, in case the
information is stored on a disk, is being read.

2 Problem Formulation
It is well known that the main disadvantage of the
potentially fastest method of searching by key, i.e.
hash-addressing is the existence of collisions.
The probability of a collision depends on a degree
of hash memory fill, which is called a loading
factor. The loading factor is usually given by an α
coefficient, which is the ratio of m stored keys and
M hash memory addresses, i.e. α=m/M<1.
The existence of collisions causes a necessity to
store in the hash memory key codes which are being
compared in the course of the searching with the
given keys.
Thus, besides the collision existence, the substantial
disadvantage of the hash addressing is demand for a

considerable memory capacity that is always greater
than the key memory capacity. The present work
suggests a technique of hash addressing, which
eliminates to a great extent this disadvantage of the
fastest method of searching by the key.

3 Information Redundancy in the
Hash Memory
In general, a keyword code contains Ix bits of an
information. If the assumption is valid under which
the values (0 or 1) of separate bits of a keyword are
independent and the appearance of zeros and ones
in those bits is equiprobable, then the amount of the
information Ix, contained in the keyword, is numeri-
cally equal to its bit number n. At hash addressing
the key X is being converted into the Ax=H(x) hash
address, where ()Η ��� is the hash conversion
function. Besides, the bits number of hash address
code Ax is equal to [log2M], where M=[m/.@
number of the hash memory address corresponds to
the quotient of division of the key number m ,
stored in the hash memory, by the hash memory
loading factor�.. Let the amount of the information
about the keyword code, which is transmitted in the
process of hash conversion into the hash address
FRGH�� EH� HTXDO� WR� ÿù. The upper bound of the ÿù
probable values, is defined by the [log2M] number
of hash address bits, though in practice in most
cases ÿù <[log2M]. Since the number of hash address
bits is always less than the keyword one, ÿù�ÿX. On
account of ÿù>0, it is obvious that storing the whole
key in the hash memory is redundant from the in-
formation point of view, because a part of the
information about the key code, namely ÿù, is
already contained in the address code AX at which
the key X is stored.
For elimination of this redundancy it is suggested to
store in the key memory not the whole n-bit key
code, but a certain h-bit code SX of the whole key
hash signature, which is the result of application of
functional conversion ���� over the � code of the
keyword, under satisfaction of two following
conditions:
�each possible keyword X has the one-to-one
correspondence to the pair� �ù�,S�>, where
AX=H(X), SX=���� i.e. the hash signature code,
must contain the amount of the initial key
information ÿS that is suffice to hold ÿS+ÿù=ÿX;
�the number h of the hash signature bits is always
less than the number of keyword bit n, i.e. h<n.
The hash number h of signature bits, is defined by
the functions H(X) and ����. The low bound of the

possible values of h is defined by the case, when the
choice of the hash conversion H(X) and hash sig-
nature ���� functions assures the following
conditions to be met:

ÿù<[log2M], ÿS=h (1)

In this case the number h of the hash signature code
bits, is defined by the equation:

h=n- [log2M] (2)

For practical implementation of the suggested
method for reducing of hash memory information
redundancy, the choice of H(X) and ��þ� should
meet the next conditions:
�H(X) function must generate uniformly distributed
hash addresses at any key code distribution law;
�H(X) and ���� functions choice, must ensure the
uniqueness of the solution of the next equation
system with respect to X at given A and S:

H(X)=A, ���� S (3)

Both given conditions may be met by making use of
selected in a special way linear Boolean functions
H(X) and ����. It means that each bit zj, j=1,...,d,
(d=[log2M]) of the hash address and each bit of the
hash signature Si, i=1,...,h are being raised in the
following form:

 n
zj=(∑bkj⋅xk)mod2, j=1,...,d,
 k=1

bkj∈{0,1} k∈Qj if bkj=1
 n
si=(∑cki⋅xk)mod2, i=1,...,h (4)
 k=1
cki∈{0,1} k∈Ri if cki=1

The choice of the Q1,...,Qd and R1,...,Rh sets
determines correspondingly the H(X) and ����

functions.
For satisfaction of the second condition all the
linear Boolean functions defined by (4) must be
linear independent.
 The next step after forming the functions
generating the bits of a hash address is the
generation of the functions for forming the h binary
bit code of the hash signature (s1,s2,...,sh), and the
generation of n functions of initial key bit values re-
covery by the code of the hash address and
signature:

xi=-i(z1,...,zd,s1,...,sh)=

z=(∑t)mod2+(∑sq)mod2 (5)
 t∈ϑi q=Ti

To solve the given problems it is necessary to prove
the correctness of the following theorem.
Theorem: If d linear Boolean functions, forming
each one bit hash address, are given, then, for any
n-bit key word X=(x1,...,xn), there exist h=n-d
functions %1����...,%h(X) the hash signature, such
that their values in totality with the hash address
bits assure one-to-one correspondence to the initial
key code. It implies the satisfaction of condition (3),
for %i��� V1i, s1i∈X, i=1,...,h, i.e. each i-th bit of
the hash signature is equal to one key code. In so
doing, the functions -i,(A,S), i=1,...,n can be
always formulated by recovery.
Proof. Let H(X) function of hash address
formation be according to (4) given by a set of
binary vectors Bj=(bj1,,...,bjn), j=1,...,d. Consider the
set Θ of the binary vectors which are the result of
all the possible XOR of the vectors B1,...,Bd, in
other words, consider the set of the vectors which
are linearly dependent on B1,...,Bd. The total
number of t vectors making up the set Θ is equal to
2d-1. Let us demonstrate that a vector whose
number of ones does not exceed n-d+1 can always
be found among the set Θ. The proof will be carried
out from the antithesis. Let us suppose the set Θ
comprises only vectors whose number of ones
exceeds n-d+1. It means that the following
conditions are met

∀ Ai,...,Aj ∈,, i,j ∈{1,...,2d-1}, i≠j ⇒ Ai⊕Aj∈,

∀Ai�.i1,.i2,...,.in),.ik,∈{0,1},k=1,...,n

 ∑.ik>n-d+1 (6)
 k=1,...,n

i.e. the Hamming distance between any two
vectors of the set Θ exceeds n-d+1.
For each vector Ai ∈,��i=1,...,t the set
i of vectors

i={Qi1,Qi2,...,Qin} different from the Ai vector only
in one component can be determined, i.e. the
Hamming distance between the k-th vector from the
indicated Qik=(qik1,qik2,...,qikn) ones and the vector Ai

is equal to one:

HD(Ai,Qik)=∑.il⊕qikl=1 k=1,...,n (7)
 l=1,...,n

It is evident that Qik ∉, as it follows from Qik∈
i,
because HD(Ai, Qik)<n-d+1. It can be shown that

i∩
j=∅ ∀ i,j=1,...,t, i≠j. Indeed, if a binary vector
U such that U∈
i and U∈
j existed, it would mean
that HD(Ai,U)=1 and HD(Aj,U)=1, and this, in its
turn, would mean that HD(Ai,Aj)=HD(Ai,U)+
HD(Aj,U)=2≤n-d+1 at the maximal value of d=n-1.
This is in contradiction with condition (6) according
to which the Hamming distance between any two
vectors Ai,Aj∈, strictly exceeds n-d+1 for n-
1≥d≥1. Consequently, the vector U such that U∈
i,
and U∈
j, does not exist and therefore

i∩
j=∅∀i,j=1,...,t, i≠j.Accordingly, the total
QXPEHU�RI�WKH�YHFWRUV�EHORQJLQJ�WR�
1∪
2∪...∪
t,
is equal to n⋅t=n⋅(2d–1). The sum of the number of
indicated vectors which belong and do not belong
the Θ set may not exceed the total number of binary
vectors that equals 2n, i.e.

n⋅(2d-1)+2d-1=(2d-1)⋅(n+1)≤2n (8)

In practice n≥8 always, therefore condition (8) is
held only at d≤n-4. This implies that at d∈{n-1,...,n-
3} the assumption under which the set Θ comprises
only vectors whose number of ones exceeds n-d+2
is not held and, consequently the set , contains the
vectors with the number of ones less than or equal
to n-d+1.
Consider the case when d≤n-4 and reveal that also
in this case the set Θ inevitably comprises the
vectors whose number of ones is equal to or less
than n-d+1. Let us suppose for this purpose that this
condition is not held, then the Hamming distance
between any two vectors of the set Θ exceeds n-
d+1=4 This implies that the set
i comprising the
binary vectors can be determined for each vector
Ai∈,, and the Hamming distance to the ùi vector
does not exceed 2: ∀Q∈
i, HD(Ai,Q)≤2. It is
obviously that
i∩
j=∅ ∀i,j=1,...,t, i≠j. Then the
QXPEHU� RI� YHFWRUV� EHORQJLQJ� WR�
1∪
2∪...∪
t is
equal to n⋅t+(2

n)⋅t=n⋅t+n⋅(n-1)⋅t/2. Expression (8)
under condition d≤n-d+1 can be transformed in to
the form:

n⋅t+t⋅n⋅(n-1)/2+t=
=(2d-1)(n+n⋅(n-1)/2+1)≤2n (9)

Under condition n≥8, that is always valid in
practice, inequality (9) is held at d≥n-6, i.e. at
d∈{n-1,...,n-6} the accepted assumption that the set
Θ contains only the vectors with the number of ones
more than n-d+1 turns out to be false.
By analogy with specification of inequality (8)
given above, specification for d≤n-6 may be carried

out through d≤n-4. In this case each of the sets
i

will contain the vectors, the Hamming distance of
which from the vector Ai∈, makes 1-3 units.
Moreover, in the manner described above the
following unequality may be derived:

(2d-1)⋅(n+n⋅(n-1)/2+n⋅(n-1)⋅(n-2)/6+ +1≤2n (10)

The analysis of the latter inequality reveals that it is
held for d≤n-9 taking account of n≥8 and for d≤n-
12 if n≥16. The further proof is performed similarly
by decreasing the value d for which the statement
being proved is valid, till d takes a value less than
n/2. In so doing, it is obviously that the set Θ cannot
contain a vector with the number of ones satisfying
n-d+1>n/2 to hold condition (6). Thus, it is proved
that at any value of d the set Θ obligatory contains
the vector whose number of ones is less than or
equal to n-d+1. The mentioned vector
Br={br1,br2,...,brn}is the sum of a certain subset ûr

⊆, modulo 2 and corresponds to the following
equation:

br1⋅x1⊕br2⋅x2⊕...⊕brn⋅xn=

=xq,1⊕xq,2⊕...⊕xq,h+1=(∑zk)mod2 (11)
 k∈ûr

q1,q2,...,qh+1∈{1,...,n}; q1<q2<...<qh+1

The variables xq,1,...,xq,h of this equation can be
determined by corresponding assigning to the h-bit
hash signature code values that the are stored in the
hash memory. In this case the latters are being
arised in the form of Su=�u=xqu, u=1,...,h, and the
variable xq,h+1 may be represented as the solution of
the following equation:

Xq,h+1=(∑zk)mod2⊕(∑Sj)mod2 (12)
 k∈ûr j=1,...,h

In this manner h+1 equations from the total
equation number n of system (5) may be obtained.
The rest of equations of system (5) may be obtained
as the solution of equations that correspond to the
other 2d -2 vectors contained in the set Θ. In this
case, if the number v of ones in the vector Br is
less than h+1, then only ��� bit functions of hash
signature formation are determined for the solution
of equation (6). The remaining h-��� functions of
hash signature bit formation can be obtained in the
manner described above, making use of the other
equations given by the set Θ.

4 Employment of Hash Memory
Redundancy Reducing for Memory
Capacity Decrease and Searching
Acceleration
Storing in the hash memory not the full n bit key
codes, but their h bit hash signatures (h<n), may
result either in a reducing of the required total key
memory capacity with maintaining the hash
memory loading factor α or in a reducing of that
with maintaining the total key memory capacity.
Decrease of required memory capacity for the hash
memory is attained by decrease of the number of
the bits stored in the memory from n to h, i.e. only
h bits are utilised instead of the whole n bit key.
Respectively, the memory capacity is reduced by
n/h≈n/(n-[log2M]) times.
Here may arise an effect of compressing, the idea of
which is in the fact that memory capacity required
for storage of the number m of the n bit keys will
come out to be less than m⋅n i.e. the hash memory
capacity will be less than the theoretical minimal
memory capacity required for storing of the keys.
The following inequality should be satisfied to meet
the condition for information compressing effect
arising:

m/.⋅(n-log2 �P�.))<m⋅n (13)

From this inequality the boundary value of the key
number mc can be easily obtained at exceeding of
which the effect of key compressing in the hash
memory takes place:

m>mc=.⋅2n⋅(1-.��� (14)

Exclusion of data storage redundancy in the hash
memory may be also used in another way. The
number M of hash memory cells may be increased
from M to M′ and their capacity decreased from n
to h with keeping the total memory capacity.
Implementation of this approach makes it possible
to obtain a set of hash memory structural solutions,
where the values of the loading factor α and the
number m of the records stored in the memory are
varied. The limiting case here is the version of hash
memory reconfiguration under which its capacity
(n⋅M=h⋅M’) and the key number m do not vary, and
the loading factor α decreases by M’/M=n/h times,
that entails collision probability decrease, searching
time decrease or decrease of the time for finding the
perfect hash algorithm for collision free addressing.

At increasing the hash memory cell number from M
to M′ with simultaneous decreasing the capacity
from n to h , at the invariable total hash memory
capacity and the m numbers of records stored, from
the condition of the total memory capacity
conservation the next equation which relates the
values mentioned above may be obtained:

M⋅n=M’ ⋅h (15)

M′ is determined as the solutions of the following
equation :

F(M’)=M’ ⋅(n-[log2M’])/M-n=0 (16)

The memory loading factor α in this case decreases
from the initial value of m/M to the value m⋅h/n⋅M.
Thus, in the hash memory with utilization of the
exclusion operation the average number T0h of
accesses to the memory is defined by the formula:

T0h=(1-.⋅h/n)-1 (17)

If the exclusion operation is not unionized in the
hash memory, the average number T1h of accesses
to the memory in searching is defined by the
formula:

T1h=-ln(1-.⋅h/n)⋅n/.⋅h (18)

Thus, storage of hash signatures in the key memory
instead of the whole keys utilization for the systems
of information storage, while the information varies
dynamically enables the time of information
searching by the key to be deceased substantially,
i.e. the main index of hash memory efficiency to be
increased at an invariable capacity of the allocated
memory.

6 Conclusions
The investigation exposed in the present work
proceeds from the fact that there exists information
redundancy in the hash memory and at full bit key
storage. Duplicating a part of the information about
the key, contained in the hash address which is a
function of the key code always takes place and it
reduces the hash memory efficiency. Information
redundancy, inherent for hash addressing may be
either utilized for increase of reliability of
information storage in the hash memory or
eliminated due to special arrangement of key
storage in the hash memory.

It has been shown that with the optimal algorithm of
hash address formation, i.e. with the algorithm
which assures a uniform distribution of hash
addresses in the address space of the hash memory
at any key massif distribution, in d bits of a hash
address d bits of information about the key is stored
and consequently there exists a possibility of
storage in the hash memory (n-d) bit hash signature
instead of n bit keys. The theoretical foundation of
the technique of exclusion of information
redundancy in the hash memory is presented, the
problems of collision settling are considered. It has
been proved that combined utilization of a restricted
probing in the main memory and in an auxiliary
memory of a small capacity is the best way of
collision settling in the hash memory without
duplication. Analytical models for solution of
problems of synthesis and analysis of the hash
memory without information duplication has been
obtained. All theoretical statements and
conclusions have been verified experimentally by
statistical simulation.
Practical efficiency of the approach suggested has
been investigated in details. The results of inves-
tigation proved expediency of practical
implementation of the method and procedures
suggested as well as good prospects for further
study in this direction.

References:
[1] Kohonen T. Content- Addressable Memories.
Springer series in information sciences, Vol 311,
Spriger-Verlag. 1997.
[2] Jagannathan R. Optimal partial-match hashing
design .ORSA Journal on Computing Vol.3,
No.2,1991, pp.86-91.
[3]Koushic M.,Diehr G. Linear-density hashing
with dynamic overflow sharing. Information
Systems, Vol.17, No.5, 1992, pp.359-380.
[4]Larson P.A. Linear Hashing with Separetors - A
dynamic hashing scheme achieving one-access re-
trieval .ASM Trans.of Database Systems, Vol.13
No.3, 1988, pp.366-388.
[5]Ou S.F., Thar A.L. High storage utilisation for
single-probe retrieval linear hashing. Computer
Journal, Vol. 34, No.5, 1991, pp.455-468.

