
Path Planning based on Accelerated Simulated Annealing

of an Arti�cial Potential Field

STAVROS VOUGIOUKAS

Department of Applied Informatics

University of Macedonia

Egnatia 156, 54006 Thessaloniki

GREECE

bougis@uom.gr

Abstract: - Our objective is to develop a general{purpose path planning system for holonomic kine-

matic devices, such as robotic manipulators, amidst stationary obstacles. The requirements for the path

planner are that it should be able to generate paths for robots with many degrees of freedom (DOF � 6)

which operate in three{dimensions, to solve path planning problems for multiple cooperating robots, to

plan paths in environments of non{trivial geometric complexity (number of geometric primitives in the

workspace) , and that it should be reasonably fast, and its performance should deteriorate gracefully

as a function of the problem complexity. A category of path planners operates by precomputing the

robot's con�guration space and then using some search technique to �nd the goal. Such algorithms are

intractable for more than 3-4 DOF's, because the volume of the con�guration space - and hence the

search space - grows exponentially in the degrees of freedom. In another approach [1, 2] the planner

incrementally builds a graph connecting the local minima of the potential function and concurrently

searches through the graph. The search approach is inspired by global optimization techniques and uses

a heuristic combination of gradient descent and random motion in order to guide the robot towards the

goal and escape from local minima. This approach avoids precomputing the con�guration space and

has been reported to successfully handle high{dimensional problems.

In this work, path planning is treated as a global optimization problem, where the non-convex cost

function is an arti�cial potential �eld constructed in the 3D workspace, and the obstacles represent the

constraints. The method of simulated annealing (SA) [10] is used, to cause the robot to escape from

local minima and converge towards the global minimum, i.e., the goal con�guration. Standard SA may

require tens of thousands of iterations, each one requiring a computationally expensive collision detec-

tion. For this reason, an accelerated algorithm is developed, which combines stochastic gradient descent

optimization, together with the random motion of SA. The location of all local minima discovered during

the search is also kept in memory, together with an estimate of their attraction area, so that the same

ones are not revisited by the robot. The accelerated algorithm is probabilistically complete, i.e., it will

�nd a goal, if one exists, with probability 1. Simulations involving the coordinated motion of 3 planar

robots (9 DOF's) were successfully performed. The path planner was also integrated with a general

purpose kinematic device simulator, in order to be used for geometrically complex, real{world problems.

Key-Words: - Robotics, path planning, potential �elds, simulated annealing

1 Introduction

Path planning algorithms are classi�ed as ei-

ther complete or approximate. Complete planners

are aimed at guaranteeing a solution, if there is

one, or proving that there is no solution. Their

complexity has been found to be exponential in

the number of degrees of freedom, and polynomial

in the number of obstacles [12, 4]. Hence, com-

plete planners have been implemented only for

speci�c problems, usually under restrictive sim-

plifying assumptions [11, 6].

A category of planners operates by precomput-

ing the robot's con�guration space and then us-

ing some search technique to �nd the goal. This

category includes the so called \cell decomposi-

tion" planners [6], and also the planners that try

to compute a local{minimum free global potential

function [8, 5]. However, since the volume of the

con�guration space grows exponentially in the de-

grees of freedom, such algorithms are intractable

for more than 3-4 DOF's.

In another approach [1, 2] the planner incre-

mentally builds a graph connecting the local min-

ima of the potential function and concurrently

searches through the graph. The search approach

is inspired by global optimization techniques and

uses a heuristic combination of gradient descent

and random motion in order to guide the robot

towards the goal and escape from local minima.

This approach avoids precomputing the con�gu-

ration space and has been reported to successfully

handle high { dimensional problems.

In this paper we will present a methodology

which uses an novel accelerated simulated anneal-

ing algorithm as a search mechanism for �nding

the global minimum of a potential function de-

�ned over the robot con�guration space. Simu-

lated annealing has been successfully used to pro-

vide optimal,or near{optimal solutions to di�cult

NP-hard problems, like the traveling salesman

problem. Our approach does not involve the pre-

computation of the robot's con�guration space, or

any global adjacency graph, and therefore it is ap-

plicable to robots with many DOF's without un-

reasonable memory requirements. Furthermore,

random techniques, like SA, seem to satisfy \bet-

ter" the graceful{degradation requirement, because

harder problems will tend to require longer run-

ning times. This is in contrast to, say, heuristic

deterministic techniques, which are good for spe-

ci�c classes of problems (in which the heuristics

apply), but often fail to solve even simple prob-

lems, which lie outside these classes.

2 Simulated Annealing

Simulated annealing (SA) is a stochastic global

optimization algorithm, i.e., it tries to �nd the

global optimum of an N dimensional energy func-

tion. In contrast with local optimization meth-

ods, SA moves both up and downhill the energy

landscape, and as the optimization process pro-

ceeds, it focuses on the most promising area. The

way it does so, can be brie
y described as follows

: given the current point q0, the SA makes a

trial{move by randomly choosing a feasible trial

point q, i.e., a trial point that satis�es all the con-

straints. This point is typically generated using

a Gaussian distribution

g(�q) =
1

(2�T)D=2
e�

�qt�q

2T (1)

where �q = q� q0. A trial point with lower en-

ergy than that of the current point corresponds to

a downhill move, and is always accepted. Uphill

moves may also be accepted, depending proba-

bilistically on the size of the uphill move and on

another parameter T , which is referred to as the

temperature. The higher T and the smaller the

size of the uphill move are, the more likely that

move will be accepted. The acceptance probabil-

ity is the Boltzmann distribution

h(�E) =
e�Ek+1=T

e�Ek+1=T + e�Ek=T
=

1

1 + e�E=T

(2)

where �E represents the \energy" di�erence be-

tween the present and previous value of the en-

ergy (cost function), .i.e, �E = Ek+1�Ek . If the

trial is accepted, the algorithm moves on from

that point. If it is rejected, another point is cho-

sen instead for a trial evaluation.

Initially the temperature is high, and the SA

samples di�erent regions of the energy landscape.

As the process continues, the temperature is low-

ered and the random steps become smaller, and

thus only small downhill moves are accepted. In

the limit, when the temperature goes to zero, SA

becomes essentially a gradient{descent method.

Given g(�q), if the temperature is lowered not

faster than

T (k) =
T0

lnk
(3)

it has been formally shown [10] that SA converges

to the global minimum with probability 1. A

more heuristic proof is given in [7]. In order

to statistically assure, i.e., requiring many trials,

that any point in q{space can be sampled in�-

nitely often in annealing{time (IOT), it su�ces

to prove that the products of probabilities of not

generating a state q IOT for all annealing{times

successive to some k0 yield zero,

1Y

k=k0

(1� gk) = 0: (4)

This is equivalent to

1X

k=k0

gk =1 (5)

But since T (k) is given by eq. 3, eq. 1 gives

1X

k=k0

gk �

1X

k=k0

e�lnk =
1X

k=k0

1

k
=1 (6)

3 Using SA for Path Planning (SAPP)

In the context of path planning, SA can be used

to minimize globally arti�cial potential �elds. The

initial robot con�guration qo corresponds to the

initial point in the optimization procedure. SA

produces a sequence of points fqo;q1 � � �qgg, with

the goal con�guration qg being the last point.

This sequence of points constitutes a connected

collision{free path only if each pair of consecu-

tive points de�nes also a connected collision{free

path. In the work of Barraquand and Latombe [3,

1] a Brownian motion implemented as a discrete

random walk was used to create such paths. In

our approach we use a variation of this method.

When the current state is q, instead of generating

a trial con�guration using a Gaussian tempera-

ture { dependent distribution centered at q (see

eq. 1), SA performs a random walk of temperature{

dependent duration, which has been shown [9]

to result in a trial con�guration that follows the

Gaussian distribution centered at the current state.

Once the trial state has been generated in this

way, the rest of the SA algorithm can be applied

exactly as it was described previously.

Hence, our SA based Path Planner (SAPP) can

be described as follows. Given a current state and

temperature parameter T , a trial state is gener-

ated by a random walk. The duration of the ran-

dom walk depends on the T ; the higher T , the

longer the walk. If the energy (potential) of the

trial state is lower than that of the current state,

it is always accepted. Else, the Boltzmann prob-

ability distribution is used to decide whether this

trial state will be accepted. If the trial state is

accepted, it becomes the current state, and the

SAPP continues from it. If it is rejected, an-

other trial state keeps being generated (via ran-

dom walks), until one is accepted. The tempera-

ture is decreased every time a trial state is gener-

ated, according to the logarithmic schedule given

in eq. 3.

The computed path, in general, will not be

smooth, because of the random walks. Thus, it

is necessary to post-process it to obtain smooth

motion. The particular smoothing algorithm we

use will be described in Section 5.

The SAPP is evidently probabilistic complete,

i.e., the probability to �nd a path, if one exists,

tends towards 1 when the computation time tends

towards in�nity. This property stems directly

from the SA convergence properties, which dic-

tate that, for a Gaussian state generation distri-

bution, and a logarithmic temperature schedule

the SA converges to the global minimum with a

probability 1.

Probabilistic path planners, such as SAPP have

been shown [3] to be able to handle high { di-

mensional problems, something that existing de-

terministic planners cannot do. Path planning

for multiple robots can be performed by simply

appending all the con�guration vectors of the in-

dividual robots together, and minimizing the po-

tential function with respect to this \compound"

con�guration (also called the state). Furthermore,

the SA can perform optimization with arbitrary

constraints imposed on the state. For example,

we may wish to plan the coordinated motion of

two mobile robots, requiring that their relative

distance is less than 10 meters, because of distance{

related communication constraints. Constraint

satisfaction is guaranteed for the entire path, be-

cause every time a random state is generated, SA

checks to see if it is feasible, i.e., if it satis�es all

the constraints.

4 Accelerated SAPP (ASAPP)

The major shortcoming of the SAPP is speed.

SA can be quite time{consuming, especially when

using the standard Boltzmann state{generating

distribution. Exponential or hyper-exponential

speedup of the SA is possible by using a di�erent

distribution [13, 7]. Some type of random motion,

in which steps are not independent of each other,

might result in non{Gaussian distributions, but

we are not aware of existing literature in this area;

this could constitute a topic for future research.

Another reason why SAPP may take a long

time is the following. The SA cannot distinguish

a local minimum from the goal, unless it visits

the very bottom of the local minimum. During

the initial phase, when the temperature is high,

the SA samples a large area of the con�gurations

space, but only goes deep into local minima much

later, when the temperature has been lowered.

This means that, even if the robot starts at a

con�guration inside the goal's attraction radius,

the SA will not commit to searching locally, but

may jump to a distant part of the search space,

and thus will visit the goal much later during the

search. This is highly undesirable and it it would

be advantageous to build some \opportunism"

into SAPP, so that it commits itself to local ex-

plorations also in the early stages of the search.

In this section we present a modi�ed SA al-

gorithm, which makes use of the characteristics

of the path planning problem to accelerate the

search procedure.

T

To

ao a1 a3 ka6

. . . .

a2 a4 a5

Heat Freeze

Figure 1: Freeze{heat cycles in simulated anneal-

ing.

4.1 Freeze-Heat cycles

In order to come up with a solution to the

local{exploration problem, we have considered two

facts. The �rst is that committing to a local

search, means in practice to perform a gradient

descent (GD). A GD is the fastest way to explore

a local minimum down to its bottom. The sec-

ond fact is that SA is equivalent to a GD when the

temperature is close to zero. This is because the

duration of the random walk is very small and

the Boltzmann distribution accepts only states

with lower energy. Thus, in order to add \op-

portunism" to the SA algorithm, it is enough to

take the temperature down to nearly zero for as

long as it is required to reach the bottom of the

local minimum. If it is the goal, the search is �n-

ished; otherwise, the temperature can resume its

original logarithmic{decay schedule. This scheme

is what we call the freeze{heat cycle (Fig. 1). No-

tice that algorithmically we implement the freeze

cycle as a GD. In order to prove completeness

however, we treat the GD as a sequence of SA

steps with zero temperature.

Freezing de�nitely saves time when the global

minimum valley is visited. However, consider a

situation where the planner has reached the bot-

tom of a deep local minimum valley. After the

temperature resumes its higher value (heating)

the robot will perform a random walk. It is likely

that at the end of this random walk the robot will

not have escaped the local minimum attraction

area. Hence, if a freeze cycle is re{applied, the

planner will waste time revisiting the same local

minimum. In fact, every time in the future that

the planner visits some con�guration inside this

minimum's attraction area, freezing will result in

revisiting the same local minimum.

The problem lies in the fact that the planner

cannot know, based on local information, whether

it has visited the attraction area of a local mini-

mum and thus it is not clear when it should ini-

tiate a new freeze{heat cycle. Next we propose a

scheme which assists the planner in making the

decision when to apply a freeze{heat cycle, i.e.,

points ai, based on information collected during

the search; thus, we introduce memory into the

SA algorithm.

4.2 Remembering Local Minima

Ideally we would like to explore a potential

minimum valley as fast as possible, escape from

it as fast as possible, and never visit it again.

As explained above, fast exploration is possible

by freezing the temperature, or equivalently per-

forming a gradient descent. In order to avoid re-

visiting the same local minima, we propose that

the SA keeps in memory a list of all the local

minima found so far, together with an estimate

of their attraction areas.

Until now, we have used the term \attraction

area" rather loosely. For our purposes, the at-

traction area of a local minimum qlm is de�ned as

the set of all con�gurations from which a gradient

descent will terminate at qlm. Clearly such sets

depend on the shape of the con�gurations space,

and may be impossible to describe analytically.

Therefore, we store in memory the rectangular

bounding box of each set. These boxes can be

computed quite easily: if gradient descent from

a point q1 terminates at a local minimum qlm,

then the boxes edges along the ith con�guration

axis are

Bi

min
= minfqi1;q

i

lm
g

Bi

max
= maxfqi1;q

i

lm
g (7)

Any time later during the search that gradient

descent from another point q2, which is outside

B, terminates in a con�guration inside B, the size

of the bounding box B is updated (enlarged) to

include q2, i.e.,

Bi

min = minfBi

min;q
i

2g

Bi

max
= maxfBi

max
;qi2g (8)

Such a scheme may overestimate the size of a local

minimum attraction area. However, the ASAPP

algorithm is formulated so that this does not af-

fect the convergence properties of the SA. More

speci�cally, in ASAPP, gradient descent will be

initiated only from con�gurations which are out-

side any existing bounding box. While a con�gu-

ration is within some bounding box, the SA will

keep performing random walks. Therefore, the

convergence of the ASAPP is at least as fast as

that of the standard SAPP.

4.3 The ASAPP Algorithm

The following is the ASAPP algorithm in C{

style pseudo-code.

k = k0; T = T0;

q = q0; path = q0;

done = FALSE;

while (done == FALSE) f

if (q 2 GOAL) f

shortenSmooth(path);

done = TRUE; g

else f

i = prevLocalMin(B;q);

if (i == UNKNOWN) f

q0 = gradientDescent(trip,q);

j = prevLocalMin(B;q0);

if (j == UNKNOWN) f

insert(B;q0);

updateLocalMin(Bj;q
0);g

else

q0 = randomWalk(trip,q);

E = computeEnergy(q0);

�E = E(q0)�E(q);

if (acceptState(q0;�E,Tk))f

append(path, trip);

shortenSmoothPath(path);

q = q0; g

k ++ ;

Tk = T0= ln k ;

if (k > Kmax) f

path = NULL;

done = TRUE;

g g g g

The ASAPP algorithm can be proved to be

probabilistically complete. The proof basically

shows that when performing freeze-heat cycles at

points ao; a1; � � �ai, equation 5 (where gk = 0 dur-

ing freezing) still holds, i.e.,

1X

i=0

a2i+2X

k=a2i+1

1

k
=1 (9)

In practice, if after Kmax iterations no solution

has been found the planner returns an empty path.

Next, we give a brief description of the ASAPP

implementation.

5 Implementation

The robot and obstacles are represented as sets

of polygons. These polygons are rasterized in a

3D bitmap which represents the workspace. All

polygon intersection checks are performed by ras-

terizing a polygon and checking if any of its vox-

els was previously occupied. A robot goal con-

�guration is de�ned by picking points on the ro-

bot's links and de�ning a set of workspace goal

points for each of them. Such a scheme was pro-

posed in [3] and these points are called control

points. A workspace local{minima{free potential

is computed for each control point by a wave-

front expansion procedure. This is essentially the

Manhattan distance of each control point from its

goal, de�ned over the 3D bitmap.

The potential E for a given con�guration is

computed by computeEnergy(), which performs

forward kinematics to compute the control point

positions in the workspace and sums all the indi-

vidual precomputed workspace potentials.

To implement the randomWalk(), at each state

q a random increment of ��i, or 0 is added along

qi. This is repeated for NT steps, where T is

the temperature and N a constant. Of course,

at each step a collision check is performed. The

gradientDescent() is implemented by searching

randomly at each q for a neighbor q0 with lower

potential E. Once one is found, it becomes the

next state and the descent continues. If after K

trials no better state is found, q is treated as a

local minimum. The random search for a state

with lower E is necessary, because an exhaustive

search requires 3n � 1 trials, where n is the state

dimension.

The prevLocalMin() function checks whether

q belongs in the bounding box B of any found lo-

cal minimum; if not, insert() creates a new entry

and implements equations 7. Function update-

LocalMin() updates the estimate of the attrac-

tion area by using eq. 8. In acceptState() the

Boltzmann distribution (eq. 2) is used to decide

whether a trial state will be accepted. The short-

enSmoothPath() function is applied to the cur-

rent path fqo;q1 � � �qkg each time after a random

walk, and once at the end. It starts from qo and

computes the maximum s for which there exists

a linearly interpolated collision{free path between

q1 and qs. Then ,it does the same starting at qs,

until qk is reached. The �nal path is a sequence

of straight line segments in the state space.

The ASAPP was implemented in C and was

also interfaced with a kinematic device simula-

tion system which is used for workcell design and

o�-line programming of industrial robots. The

functionalities o�ered by this system are accesible

by a graphical user interface, or by a command

language interpreter. Once a workcell descrip-

tion has been loaded, the ASAPP can be invoked

from a pull{down menu. The user can use the

mouse to select the robot(s) for which planning is

to be performed, and the obstacles. By default,

each robot's single control point is at its tool{tip.

However, any number of control points, on any

link, can be de�ned. The goal set for each con-

trol point is a set of polygons that is selected by

the user. The ASAPP is launched as a separate

process because its running time can be in the

order of tens of minutes.

6 Simulation Results

We have constructed two planar path planning

examples of a triangular robot amidst polygonal

obstacles (Fig. 2). The control point was the

right lower corner of the triangle{robot and the

goal was the bottom left corner of the workspace.

Path planning was performed 1000 times to col-

lect some statistics. The size of the bitmap was

Figure 2: 2D examples with 1 and 3 local minima.

128x128 pixels. There were 1 and 3 local minima

in the left (�rst) and second (right) examples re-

spectively. In the �rst example both the SAPP

and ASAPP algortihms were used, in order to

compare their performance. The SAPP required

an average of Tav = 111sec with minimum and

maximum times being 10 and 2104 sec respec-

tively. For the ASAPP these times were 2, 14

and 76 sec, respectively. Clearly, the ASAPP is

about an order of magnitude faster . The ratio

Tmax=Tav is also 5.4, while for SAPP it is 19. This

means that the ASAPP running times are more

consistent, with less variance. The second exam-

ple was ran only for ASAPP, with Tmin = 1sec,

Tav = 35sec and Tmax = 243sec. The average

time is higher because there are 3, and not 1 lo-

cal minima to be explored.

A more interesting experiment was to plan the

motion for 3 planar robots (9 DOF's) in a nar-

row corridor (see Fig. 3). The initial state is

shown in the top{left frame and the goal state

in the bottom{right frame (time increases from

left to right). The bitmap used was 256x256. For

each robot, the control point was a polygon ver-

tex and hence the orientation at the goal is arbi-

trary. This is a di�cult problem with the initial

state being at a very deep local minimum because

the potentials of the irregular and rectangular ro-

bots drive them to collide with the triangle robot;

however, both of them eventually back{up in or-

der to interchange positions. The planner was

ran for 1000 times and the running times were

Tmin = 29sec, Tav = 94:3sec and Tmax = 354sec.

The Tmax=Tav ratio was 3.75. All examples were

ran on a SUN SPARC10 machine and timed with

the C language time() function. Notice that in

this example there exist also other paths towards

the goal (e.g. a di�erent back{up sequence) and

Figure 3: Coordinated motion of three 3{DOF

robots.

Figure 4: COMAU robot example.

thus, the reported times are computed over pos-

sibly di�erent state-space paths.

We have also interfaced the planning algorithm

with a 3D robot simulator. We are currently

conducting preliminary experiments involving a 6

DOF COMAU industrial robot, with a geometric

model consisting of 630 polygons. The workspace

is discretized in a 3D array of size 128 x 128 x

128. In one of these experiments, the robot was

commanded to move its tool{tip to a speci�c 3D

location, behind a box{obstacle, while checking

for self{intersection among all its links (and for

collision with the obstacle).

In 20 simulations the running times were com-

puted to be Tmin = 61sec, Tav = 291:4sec and

Tmax = 638sec. The computation of the poten-

tial �eld over this array required 54 sec and is

included in the numbers for the running times.

The goal of this simulation was not to produce

a complex path, but rather to get a feeling for

the running times for more complex robot mod-

els. The preliminary results are encouraging and

suggest that path planning for more complex en-

vironments may be feasible using ASAPP.

7 Discussion and Future Work

We have presented a path planning methodol-

ogy which uses a novel accelerated simulated an-

nealing optimization algorithm as a search mech-

anism for �nding a path towards the global min-

imum of an arti�cial potential �eld. The algo-

rithm was shown to be capable of escaping from

deep local minima and of generating paths for

high{dimensional problems (9 DOF's) involving

multiple robots. The planner has been interfaced

with a 3D robot simulation package. We are cur-

rently evaluating the ASAPP performance in real{

world problems involving robot and obstacle rep-

resentations with hundreds of polygons.

One drawback of the proposed planner is that

it is only probabilistically complete and its run-

ning time is a random variable. We plan to esti-

mate the running time distributions for di�erent

classes of problems and determine how long the

planner should be allowed to run, before declar-

ing with adequate con�dence that no solution ex-

ists. Also, parallel implementations of the AS-

APP could be used to decrease the Tav=Tmin ra-

tio.

Another practical constraint of the current AS-

APP implementation is that the robot workspace

needs to be digitized, in order to compute the in-

dividual control{point potentials and to perform

intersections. We have ran examples with 3D ar-

rays of size 128x128x128. However, 3D arrays be-

come impractical when high resolution is needed

over large workspaces. Work is underway to use

an octree representation instead of a 3D array,

thus sacri�cing speed for spatial resolution. Fi-

nally, the path found by ASAPP{and any ran-

dom path planner{will be di�erent each time the

planner is executed. If this is undesirable it may

possible to avoid regions of the state space by im-

posing extra constraints.

References

[1] J�erôme Barraquand. A monte{carlo algo-

rithm for path planning with many degrees

of freedom. In Proc. of the IEEE Intern'l

Conf. on R & A, pages 1712{1717, 1990.

[2] J�erôme Barraquand. Robot motion plan-

ning: A distributed representation approach.

Int. J. of Robotics Res., 10(6):628{649, 1991.

[3] J�erôme Barraquand, Bruno Langlois, and

Jean-Claude Latombe. Robot motion plan-

ning: A distributed representation approach.

Technical Report STAN-CS-89-1257, Dept.

of Computer Science, Stanford University,

1989.

[4] J. F. Canny. The Complexity of Robot Mo-

tion Planning. MIT Press, Cambridge, MA,

1988.

[5] C.I. Connoly, J.B. Burns, and R. Weiss. Path

planning using Laplace's equation. In Proc.

of the IEEE Intern'l Conf. on R & A, pages

2102{2106, 1990.

[6] B. Donald. Motion planning with six degrees

of freedom. Technical Report AI-TR-791,

MIT, 1984.

[7] Lester Ingber. Simulated annealing: Prac-

tice versus theory. Journal of Mathematical

and Computer Modelling, 18(11):29{57, De-

cember 1993.

[8] D. E. Koditschek and E. Rimon. Exact robot

navigation using cost functions : The case of

distinct spherical boundaries in en. Technical

report, Yale, 1988.

[9] A. Papoulis. Probability, random variables,

and stochastic processes. McGraw-Hill, 1984.

[10] C. Gelatt Jr. S. Kirkpatrick and M. Vecchi.

Optimization by simulated annealing. Sci-

ence, 220(4598):671{680, 1983.

[11] J. T. Schwarz and M. Sharir. On the `pi-

ano movers' problem: I. the case of a two{

dimensional rigid polygonal body moving

amidst polygonal barriers. Comm. on Pure

and Applied Mathematics, 34:345{398, 1983.

[12] J. T. Schwarz and M. Sharir. On the `Piano

Movers' Problem: II. General Techniques for

Computing Topological Properties of Real Al-

gebraic Manifolds, pages 298{351. Academic

Press 4, 1983.

[13] H. Szu and R. Hartley. Fast simulated an-

nealing. Physical Letters, 122(3-4):157{162,

1987.

