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Abstract: - Two electronic engineering systems modelled by nondifferentiable noninvertible maps, the
Differential Pulse Code Modulation (DPCM) system and bandpass  modulator are investigated. Although
quantitative similarities can be observed through the comparative analysis of phase and parameter planes,
these two systems present different features when analysed from the perspectives of the theory of
noninvertible maps and that of nonlinear dynamics. It is shown that the models obtained correspond to
noninvertible maps of different kind; and also that periodic solutions of opposite stability can be observed only
in the case of DPCM, moreover, the basins of attraction are bordered by different type of singularities: critical
lines and their preimages of different order for the Sigma-Delta Modulator, and stable manifolds of saddle
points on the basin frontier for the DPCM. The dynamics of the two systems are shown to become more
similar when the parameters approach the centre bifurcation, which is shown to be particular to the
nondifferentiable models. At the centre bifurcation the observed behaviour is more complex for the Sigma-
Delta Modulator.
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1 Introduction
Both Differential Pulse Code Modulation (DPCM)
systems and Sigma-Delta ( Modulators are
engineering systems widely used in practice. DPCM
systems are based on prediction and quantization.
They are used in transmission for bit rate reduction,
for example in digital phone networks [3]. Bandpass
sigma-delta ( modulators [1,2] are used in data
conversion systems in areas such as RF
communication systems and spectrum analysers. The
purpose of this work is to compare these two
systems from the perspective of noninvertible map
theory, the starting point for comparison being that
both systems are modelled by nondifferentiable
models.

A first investigation has already been carried out to
compare these two systems in the vicinity of the foci
destabilisation bifurcation, known in the
differentiable case as the Neimark-Hopf bifurcation
[5]. The results obtained showed qualitative
similarity of the corresponding phase planes of both
systems at the bifurcation point. Nevertheless, our
current studies show that the destabilisation of the
foci in the case of nondifferentiable models takes

place in a qualitatively different way when
compared to the Neimark-Hopf bifurcation, and for
this reason we refer to it as a “centre” bifurcation.
Moreover, when analysing the two models as
noninvertible maps and for broader parameter
values, qualitative differences between the two
systems can be observed. In order to better
understand these differences, Section 2 is devoted to
a short review of noninvertible maps. Section 3
describes the system models, and section 4 discusses
differences and similarities between the two models.
A concluding section ends the paper.

2 Review of Noninvertible Maps
If we consider the dynamics of a system described
by any map in the state space, we refer to the notion
of a noninvertible map when the state space contains
regions where the backward iterate (also called
preimage) of a point under the map is not unique, or
does not exist. This also means that a point of the
state space may result from the iteration of distinct
starting conditions. Then the regions Zi of the state
space with different number i of preimages are
separated by segments of critical curves, called LC



from ligne critique in French [4]. One can thus
consider the regions with more than one preimage as
a superposition of i sheets, where each sheet
corresponds to a given rank-one preimage (first
backward iterate). Therefore, when the LC are
crossed, the number of first rank preimages changes.
Another important notion to which we shall refer
hereafter is the notion of singularities in the
particular context of two dimensional map T. A k-
cycle (order k cycle or period k cycle) of T consists

of k iterated points (images) satisfying X XTk

with X XTl , for 1 l k , l and k being
integers. A fixed point is a cycle with k 1.  The
nature of fixed points and order k cycles can be
determined using the eigenvalues of the Jacobian
matrix. Let Sj, j=1,2 be the two eigenvalues,

a) |S1| > 1 and |S2| < 1, X*  or (Xi), i=1,...,k is a

saddle,

b) |S1| > 1 and |S2| > 1, X* or (Xi), i=1,...,k is an

unstable node,

c) |S1| < 1 and |S2| < 1, X* or (Xi), i=1,...,k is a
stable node.
Similarly, when the eigenvalues are complex, i.e.
S1= e-j , S2= e+j

d)  < 1, X* or (Xi), i=1,...,k is a stable focus.

e)  > 1, X* or (Xi), i=1,...,k is an unstable focus.

When the eigenvalues are on the unit circle, the
system is on the limit of stability.
Other kind of singularities are the stable and
unstable manifolds associated with fixed and
periodic points.
If P* is an unstable fixed or periodic point, and U is
a neighborhood of P*, the local (i.e. in U) unstable
manifold of P* is defined as the set of the points of
U whose consecutive preimages converge towards
P*. The global unstable manifold is the set of points
which consecutive preimages exist and converge
towards P*. It can be constructed by plotting the
images of the local unstable manifold. The same
reasoning can be applied to the stable manifold. The
global stable manifold can be constructed by plotting
the preimages of the local stable manifold.
To study the behaviour in the system under
consideration, we require also knowledge about the
regions of existence of the periodic points, the more
complex chaotic attractors, and their basins of
attraction (i.e. the range of initial conditions from
which trajectories converge towards an attractive
solution - periodic point or chaotic attractor).

By bifurcation we understand a qualitative change in
the system behaviour (local or global) under some
particular parameter variations. When the parameter
vector dimension is greater than one, bifurcations
occur over a curve (surface in 3D) called a
bifurcation curve. Bifurcation curves are
summarized in bifurcation diagrams and enable a
priori knowledge of the system convergence or
divergence, chaotic or periodic behaviour.

3 System Models
DPCM (see Fig.1) is a data compression technique
based on error transmission. The differential part of
the DPCM system is used to reduce the signal flow
before its A/D conversion and is based on the
following coding principle: as the successive signal
values are usually correlated, it would be desirable
to make use of this transmission redundancy,
without in any way losing information. Therefore,
rather than transmitting the signal itself, only the
prediction error e, i.e. the difference between the
predicted $s  and the effective s signal value, is
quantized and transmitted. The difference between
the two correlated signals is thus coded in a smaller
number of bits, and so the transmission data flow is
reduced. The input-output system is shown in Fig.1.
The input signal s has to be reconstructed at the end
of the chain. The reconstructed signal is called s' . At
the encoder, the predicted value $s  of the input
signal s is calculated based on its past samples by the
recursive linear filter R. The encoder of the system
(Fig.1) includes a nonlinear element - the quantizer.
The latter is approximated by a piecewise linear
characteristic containing points of non-
differentiability. Structurally similar is the scheme of
the bandpass  system (Fig.2) whose quantizer is
represented by a sign function.  systems operate
in discrete time and convert an analogue input signal
x into a low-resolution high-speed stream of bits. In
the case of a bandpass system, the goal is to
shape the quantization noise away from the narrow
band in which the input signals will lie, so that it can
subsequently be removed.

An ideal second-order bandpass  modulator has

noise transfer function zeroes at e±j , where  is
chosen to centre the passband at any required
frequency f0 = fs. /2  (fs is the sampling frequency).

In a practical implementation of this system, finite
op amp gain will alter the noise transfer function

zeros from e±j  to re±j , where r < 1.
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Fig.2 Bandpass  modulator

With noise transfer function zeros at re±j  and zero
input, the system of Fig.2 is modelled by the
equation
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A corresponding substitution can be applied to the
DPCM system, by selecting the new variables:
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p is the DPCM quantizer slope and is called the
companding gain, it is chosen larger than one in
order to amplify the signal-to-noise ratio when the
quantizer input is small. For both systems, T
belongs to the class of piecewise-continuous
noninvertible maps.

4   Results and Discussion

4.1   Comparison of the  and
DPCM maps
If we compare the two maps (2) and (3), it may be
seen that because of the different nonlinearity of the
quantizer, the  map is of the type Z1/Z2/Z1 while
the DPCM map is of the type Z1/Z3/Z1. For both
systems, the Zi (i>1) region is enclosed between the
two critical lines segments LCa and LCb (the region
Zi consists of points with i preimages), see Figs.3, 4.
The case when the number of preimages changes by
one when crossing the critical lines is typical only
for piecewise continuous maps, while the case when
the number of preimages changes by two when
crossing the critical lines is typical for all other maps
and is therefore much more studied in theory. By
that criterion the DPCM map is closer to continuous
maps.

4.2   Centre bifurcation
For <1 ( ) and a2<-1 (DPCM), we observe the
existence of stable foci for both systems, more of
which appear as gets closer to 1, and a2 to –1. An
important bifurcation particular and common to both

 and DPCM systems, not encountered in the
differentiable case, is related to the destabilisation of
the foci. In the differentiable case, the Neimark-
Hopf bifurcation characterises the destabilisation of
the focus and the emergence of an invariant closed
curve in the vicinity of the destabilised focus. In the
case of our two systems, described by piecewise
linear functions, at the bifurcation value the fixed
(periodic) focus point becomes a centre, as locally
the map is linear, but not globally.

Fig. 3 Centre bifurcation  cos =0.125  r=1.00



Thus at the bifurcation value trajectories trace out
elliptical orbits, lying on closed invariant curves
around the fixed and periodic points, together with
more complex trajectories as shown in Figs.3, 4.

Fig. 4 Centre bifurcation DPCM a1=0.25 a2=-1.00

This behaviour lies within an invariant region,
bounded by the critical lines and their first rank
images. But the main difference with respect to the
differentiable case can be seen after the bifurcation
value, when the fixed point becomes a repelling
focus. Now the trajectories spiralling out from the
focus do not diverge to infinity, but the nonlinear
effects give rise to the appearance of some closed
invariant set which is generally far from the fixed
point (Figs. 5,6). How far depends on the location of
the critical lines.

Fig. 5 After the centre bifurcation,
 cos =0.125 r =1.001

Moreover, at the bifurcation, centres of different
period can coexist (multistability). This phenomenon
is illustrated in Figs. 3-4. Because of the difference
with the Neimark-Hopf bifurcation we refer to that

bifurcation as a centre bifurcation.
Again comparing the two systems one can notice
that an additional, more complex trajectory (in
white) is observed in the case of the  modulator
(Fig.3), while all trajectories remain of only centre
type for the DPCM.

Fig. 6 After the centre bifurcation,
DPCM a1=0.25 a2=-1.001

4.3   Basin frontier
In our previous study [5] we have analysed the
importance of the critical lines as limiting the
absorbing areas within which all system trajectories
are captured. In this section, we are concerned with
another important issue of nonlinear dynamics,
namely finding what singularities form the limits of
the basins of attractions for the two systems.

Indeed, by using the methods and tools of
noninvertible maps, we are able to explain also the
dynamics within the basin of attraction. In fact, we
shall see that the evolution of the phase trajectories
is strictly determined by the invariant manifolds of
the nonattractive singular points (DPCM) or by the
preimages of the critical curves ( ). These
singularities of higher order allow us also to analyse
the type of frontiers (fuzzy, connected, non-
connected) which exist between the different basins.

Let consider first the DPCM case where we shall see
that some periodic points of saddle type located on
the frontier of the basin allow us to determine this
frontier. In order to calculate the stable and unstable
manifolds of the periodic points associated with the
DPCM system, we assume that the saddle points do
not lie on the lines of discontinuity of the map T i.e.
the map T is assumed to be differentiable at the
vicinity of the points of the saddle cycle.



Let consider now as an example the case when the
basins of a stable period 11 node and a stable period
11 focus coexist (Fig.7).

Fig.7 DPCM, basins of attraction of the stable node
11 and focus 11

An analysis shows that 4 saddle points of period 11
are located on the frontier of the two basins. Let call
the first points of each period 11 saddle C1, C2, C3
and C4 respectively. To find the frontier, let us trace
the corresponding stable and unstable manifolds to
the four period 11 saddles. As initialisation, we start
with the coordinates of the saddle points located on
the frontier of the basin.

C1

C2

C3

C4

Fig.8 DPCM, borders of the basins of attraction
given by the stable manifolds of the four saddles of

period 11 C1C2C3C4

Then, we proceed to a linear approximation of the
stable manifolds in the vicinity of the points of these
saddles (the unstables manifolds converge towards
the points of the attractive period 11 node and
focus). It can be seen that the stable manifolds
associated with the saddles C1, C2 form the frontier

of the basin of the node 11 and are represented in
pale grey (Fig.8). The stable manifolds associated
with the saddles C3, C4 form the frontier of the basin
of the focus 11 and are coloured in dark grey (Fig.8).
The set of preimages of the stable manifolds
associated to the saddles C3 and C4 form the islands
in the basin of the focus 11.

Fig.9 basins of attraction of the stable foci

In the case of the  system, at all points where the
map T  is differentiable, its Jacobian matrix is

cos2
10

2 rr
          (5)

which has eigenvalues at re j . Thus when r < 1 all
fixed and periodic points of T  are stable foci, and
there are no unstable periodic points. In this case, the
boundary of the basin is made of segments of the set
LC-1 and its increasing rank preimages LC-k.
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Fig.10 , borders of the basins of attraction given
by the preimages of the critical lines LC-k

It is intuitively clear why this should be the case –



the only reason for two nearby points to converge to
different locations is that after some number of
iterations their iterates land in different quadrants,
i.e. the two initial points must lie on opposite sides
of some preimage of one of the axes. As an example,
Fig. 9 shows the basins of attraction for r= 0.97 and
cos =-0.4 and Fig. 10 labels the preimages of Fig.9
with the preimages of positive x axis shown in bold
and numbered in bold according to their order, and
the preimages of the negative x axis numbered in
italics.

5   Conclusion
Two electronic systems, the  Bandpass Modulator
and the DPCM both modelled by nondifferentiable
noninvertible maps have been analysed and
compared from the perspective of the nonlinear
dynamics. It has been shown that the two systems
give rise to a different kind of map, Z1/Z2/Z1 for the

 and Z1/Z3/Z1 for the DPCM. But despite the
different map describing each of the systems, similar
features for both nondifferentiable models have been
observed and explained, such as the centre
bifurcation, which does not exist in the case of
differentiable models. This difference arises from
the piecewise linearity of the maps, and is
characterised among others by the fact that there is
not an invariant closed curve after the bifurcation.
The two systems have also been shown to differ by
the nature of the critical set which limits the frontier
of the basins of attraction: stable invariant manifold
of the nonattractive singular points for DPCM, and
the set of preimages of critical curves for .
Finally, we hope that this analysis has contributed to
the better understanding of the dynamical behaviour
of these two electronic systems and also to the
development of the noninvertible map theory for the
case of nondifferentiable models.
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