
Cluster Learning for the Approximation of Dynamical System

M. CONTI, S. ORCIONI, C. TURCHETTI
Department of Electronics

University of Ancona
via Brecce Bianche, 60131 Ancona

ITALY

Abstract: - An improved stochastic learning algorithm, called Cluster Random Weight Change (CRWC), is applied in this
work to train a Neural Network in the approximation of static and dymamical systems. The network is subdivided in a fixed
number of neurons to form some clusters of neurons and learning is applied to one cluster at a time. The algorithm has been
implemented in a PC and used to train an analog Neural Network chip in a “chip in the loop” learning scheme. The stochastic
algorithm has been modified with respect to a previous version to improve its learning accuracy and to reduce the critical
dependence on noise amplitude that is a drawback of stochastic learning algorithms.

Key-Words:Neural Networks, Stochastic, Learning, Dynamical Systems CSCC'99 Proceedings, Pages:3021-3025

1 Introduction
The introduction of noise during supervised learning allows
the neural network to reach the global optimum avoiding
local minima in the error function. Some examples of
stochastic learning are: simulated annealing,
backpropagation with weight perturbation, introduction of
weight noise during training[1], Random Weight Change
[2]. Furthermore it has been shown that training with noise
may improve the generalization capability of the network
and reduce the negative effects of the weight variations after
learning [2-3].
On the other hand, stochastic learning algorithms show a
critical dependence on the parameters of the annealing
function, that is the function which reduces the noise
amplitude during learning.
To solve this problem the Cluster Random Weight Change
(CRWC) learning algorithm has been introduced [2]. In this
work CRWC has been modified to improve learning
accuracy and stability, to reduce the dependence on noise
amplitude and to reduce the number of iterations required to
reach the optimum. The algorithm has been applied to train
an analog neural network chip in the approximation of static
and dynamic systems.

2 Cluster Random Weight Change
The network is subdivided in a fixed number of neurons to
form some groups or clusters of neurons, as shown in Fig. 1.
Learning is applied to one cluster at a time for some steps,
keeping the other weights fixed to the value they reached at
the end of their learning time. This cyclic procedure is
repeated until the error is acceptable. The error is calculated
as the difference between the desired output and the output
of the complete network.

The condition used in [2] to switch learning from one
cluster to another is related to the number of iterations
dedicated to each cluster. The criterion is very simple and
can be easily implemented in hardware. An improvement in
the performances of the algorithm has been reached by
adding some conditions on the variation of the error during
the learning of each cluster. These conditions are based on
the considerations that: i) a cluster may be incapable of
decreasing the error due to the values of the weights of the
other clusters (in this case further iterations in training this
cluster are useless); ii) the stability of the algorithm is
improved if only small variations of the error are allowed
for each cluster.
For this reason the following two variations of the algorithm
have been tested.
A) Learning switches between one cluster to another when

at least one of the following conditions is true:
- the number of iterations for the current cluster is

greater than a fixed number Imax;
- from the beginning of the training of the current

cluster the increment of the error is greater than a
fixed value ∆E+;

- from the beginning of the training of the current
cluster the decrement of the error is greater than a
fixed value ∆E-.

B) Learning switches between one cluster to another when
at least one of the following conditions is true:
- the number of iterations for the current cluster is

greater than a fixed number Imax;
- from the beginning of the training of the current

cluster the increment of the error is greater than a
fixed value ∆E+;

- the error function does not decreases for more than a
fixed value I∆ of iterations.

For comparison the criterion used in [2] is reported:

Learning

w (t)1

neuron 1

w (t)2

neuron 2

w (t)3

neuron 3

w (t)4

neuron 4

w (t)n-1

neuron n-1

w (t)n

neuron n

x(t)

Control

cluster 1

cluster 2

cluster k

Error

y(t)

desired
output

Fig.1 Example of Cluster Network partition

C) Learning switches between one cluster to another when
the number of iterations for the current cluster is greater
than a fixed number Imax.

Each cluster is trained on turn using Random Weight
Change (RWC) algorithm [2] which is based on the well
known Brownian motion equation, defined by the following
discrete time algorithm:

if [E(w(i))>E(w(i-1)]
then v(i+1)=v(k)+η[n(i)-v(i)]
else v(i+1)=v(i)

end if
w(i+1)=w(i)+µ v(i+1)

where i is the iteration number, w is the weight vector, and
n(i) is a random process vector, with standard deviation
vanishing as the iteration number increases or the error
decreases, E(w(i)) is the error, η and µ are learning
parameters. In the following a brief description of the
algorithm used is reported:

m=0
while (E < Edesired and m < itermax)

for j=1 to k /* for each cluster */
i=0
Eaverage=0
while (swith criterion)

calculate error E
Eaverage=E+Eaverage

update j-th cluster of using RWC
m=m+1
i=i+1

end while
Eaverage=Eaverage/iter
update noise variance σn

2(Eaverage,m)
end for

end while

Where k is the number of clusters, M the number of weights
for each cluster, N=k*M the total number of weights, iter is
the number of iteration for each cluster.
The proposed algorithm is general and can be applied to
many optimization problems such as learning of different
types of Neural Networks. In the following examples the
algorithm has been applied to a class of Neural Networks
called Approximate Identity Neural Networks (AINN)[4]
whose input-output relationship is:

0

20

40

60

80

100

120

140

1000 2000 3000 4000 5000 6000 7000 8000 9000

Iterations

Error %

Fig. 2a Neural network training with CRWC and switch criterion A
(Imax=100, ∆E-=0.3, ∆E+=0)

Learning Incrementale in base al minimo dell’errore

0

20

40

60

80

100

120

140

160

50 55
0

10
50

15
50

20
50

25
50

30
50

35
50

40
50

45
50

50
50

55
50

60
50

65
50

70
50

75
50

80
50

85
50

90
50

95
50

Iterazioni
E

rr
o

re
 %

Iterations

Error %

Fig. 2b Neural network training with CRWC and switch criterion B

(Imax=100, I∆=50, ∆E+=0.6)

50

100

150

200

250

1000

Iterations

Error %

3000 40002000 5000 6000 900080007000

Fig. 2c Neural Net. training with CRWC and switch criterion C (Imax=50)

∑
=

Ω=Λ
n

j
jjn cwx

1

);(= (1)

∑ ∑
= = 
















 σ−−
−




 σ+−n

j

p

i

ijiiijijiiij
j

txntxn
c

1 1 2

)(
tanh

2

)(
tanh

where w={n,t,σ} ∈ R r is the weight vector, x ∈ R p the input
vector. The first example reported is the training of an
AINN with a one dimensional input. The simulations have
been performed with matlab. The desired functions is

)(6.0 xsinf π= . Figs. 2a-c reports the error during learning
for the three (A-B-C) switching criteria of CRWC. Three
different random sequences are reported in each figure.
Learning speed is higher with algorithms A and B. The
results show an increment in learning accuracy (the error is
often lower for cluster learning A and B) and a less critical
dependence on the amplitude of noise and on the annealing
parameters.

3 Experimental Results: Off-Chip Learning
3.1 Function Approximation.
Cluster Random Weight Change has been tested by a chip
inserted in the learning loop scheme as shown in Fig.3.
We used a one-input one-output Neural Network made of 4
chips with 6 neurons each fabricated at the IRST-laboratory
(Trento-Italy) with a 2µm CMOS technology [5]. The
communication between the host-PC, which performs
learning, and the neural network has been achieved by
means of an interface on AT bus with 16 output and 8 input
analog channels.
Figs 4-8 show the experimental results obtained training the
analog Neural Network as reported in the schematic of Fig.2
by using CRWC (learning algorithm B).
Figs 4a-4d are photos of the oscilloscope in different time
instants during learning. The Figures show the output of the
Neural Network and the desired output which is the
function y = 1-exp(-x/τ). Fig. 5 reports the error during.
Similar results are reported in Figs. 6a-d and 7, in this case
the desired function is function y = sin(πx)/x.
Figs 8a-8d show the desired output function y=x3

(continuous lines) and the output of the neural network
(dots) during learning: iteration 1800 for Fig. 8.a, 2700 for
Fig. 8.b, 7200 for Fig. 8.c and 1000 for Fig. 8.d.

3.2 Trajectory Approximation.
It has been demonstrated that artificial neural networks are
able to approximate arbitrary continuous input-output
mappings. Similar results has been established with regards
to the approximation of some classes of continuous time
dynamical systems [6]. In [7] it is shown that, under wide
conditions, the trajectory of a dynamical system expressed
as ordinary differential equations can be approximated with
an arbitrary error by continuous-time recurrent AINN,
provided that the initial conditions of the two systems are
close to each other.
In this work CRWC learning algorithm has been used to
approximate the trajectories of a dynamical system.
The analog neural network chips used in the function
approximation described in previous section has been used
to implement the Approximating Dynamical System
described by the following differential equation.





ω+−Λ=
=

tAbywyy

ayy

n cos);(222

21

&

&
(2)

where);(2 wynΛ is the output of the AINN reported in
eq.(1). The Approximating Dynamical System is described
in Fig. 9, where integrators, adders and multipliers have
been realized by using analog circuits (Op. Amps., resistors
and capacitors). This Approximating Dynamical System has
been used to approximate the trajectories of the Duffing
equation. This equation assumes a relevant importance since
its behavior may be periodic, almost periodic or chaotic
depending on the values of the parameters chosen.

Duffing equation is a simple form of nonlinear system
which behave chaotically. These systems which were
thoroughly studied in the past are described by the
following equations:





ω+µ−β−=
=

tAxxx

xx

cos2
3
12

21

&

&
(3)

The Duffing Dynamical Systems has been implemented in
analog hardware by using standard discrete components for
values of the parameters β, µ and A for which its behaviour
is periodic. Figs. 10 a-d reports the output of the Duffing
dynamical system and the output of the approximating
dynamical system during learning with CRWC.

4. Conclusions
A stochastic learning algorithm is presented in this work
based on the idea that the Neural Network is partitioned in
clusters and one cluster a time is trained. From the
simulations performed we concluded that the partition
guarantees an higher convergence probability.The algorithm
has been used to train an analog neural network chip.

References:
[1] A.F.Murray, P.J.Edwards, “Enanched MLP Performance and

Fault Tolerance Resulting from Synaptic Weigth Noise
During Training”, IEEE Transactions on Neural Networks,
Vol.5,No.5, pp.792-802, September 1994.

[2] M.Conti, S.Orcioni, C.Turchetti, “A new stochastic learning
algorithm for analog hardware implementation", Proc. of the
Int. Conf. on Artificial Neural Networks, ICANN 98, Vol.2,
pp.1171-1176.

[3]C.M.Bishop;Training with Noise is Equivalent to Tikhonov
Regularization, Neural Computation, n.7, pp. 108-116, 1995.

[4] M.Conti, S.Orcioni, C.Turchetti, "A class of neural networks
based on approximate identity for analog IC's hardware
implementation", IEICE Trans. on Fundamentals,Vol.E77-A,
n.6,pp.1069-1079, June 1994.

[5] M.Conti, "Analog CMOS implementation of Approximate
Identity Neural Networks", IEICE Trans. on Fundamentals of
Electronics, Feb 1997, pp.427-432.

[6] T.Chen, H.Chen, “Approximation of continuous functionals
by neural networks with application to dynamic systems”,
IEEE Trans. On Neural Networks, Vol.4, No.6, Nov. 1993.

[7] M.Conti,C.Turchetti, "Approximation of dynamical systems
by continuous-time recurrent approximate identity neural
networks", Int. Journal Neural, Parallel & Scientific
Computations, Vol.2, n.3, p.299,Sept. 1994.

Input x(t)

Weight vector w(t)
Output y(t)

8 bit DAC

8 bit ADC

Fig. 3 Chip in the learning loop scheme.

4a

4b

4c

4d
Fig. 4a-d. Output and desired output y = 1-exp(-x/τ) during learning.

Fig. 5 Error during learning of the function of Figs 4.
.

6a

6b

6c

6d
Fig. 6a-d. Output and desired output y = sin(πx)/x during learning.

Fig. 7 Error during learning of the function of Figs 6.

-1

-0.5

0

0.5

1

1.5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Vin (volt)

(v
o

lt
)

Desired Output

Output

8a

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Vin (volt)

(v
o

lt
)

Desired Output

Output

8b

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Vin (volt)

(v
o

lt
)

Desired Output

Output

8c

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Vin (volt)

(v
o

lt
)

Desired Output

Output

8d
Fig. 8a-d. Output and desired output y=x3 during learning.

PC

8bit ADC

AINN
y (t)

A cos(ωt)

8bit DAC

 ∫

Dyn. Sys.

2’ y (t)2 ay (t)=y (t)2 y (t)1a 1’ e(t)+

-
b

b y (t)2

x (t)

errorweights

Learning
Algorithm

-

Approximating Dyn. Sys.

 ∫

1

Fig. 9. Architecture used for the trajectory approximation.

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.01 0.02 0.03 0.04

time (s)

(v
o

lt
)

Desired Output

Output

10a

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.01 0.02 0.03 0.04

time (s)

(v
o

lt
)

Desired Output

Output

10b

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.01 0.02 0.03 0.04

time (s)

(v
o

lt
)

Desired OutputOutput

10c

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.01 0.02 0.03 0.04

time (s)

(v
o

lt
)

Desired OutputOutput

10d
Fig. 10. Output and desired output trajectories during learning.

