
CSCC'99 PLENARY LECTURE
Recent Advances in Parallel Programming

Languages and Tools

DOMENICO TALIA
ISI-CNR

c/o Deis, UNICAL, 87036 Rende (CS)
ITALY

Abstract: - Parallel programming models, languages, and tools are the basic instruments for the design and
implementation of high performance applications on scalable computer architectures composed of a collection
of processors (multiprocessors or multicomputers). In the latest years several high-level languages and
software tools have been designed for the programming of parallel software. This paper introduces and
discusses the recent advances in the area of parallel and distributed programming tools and languages. The
paper describes different parallel programming languages and tools that reflect different parallel computation
models. It introduces the design goals and issues of parallel programming models and languages belonging to
the following classes: message-based languages, shared-space based languages, data-parallel languages,
parallel toolkits, parallel declarative languages, parallel object-oriented languages, and parallel skeleton
languages.

Example tools and languages in each class, such as HPF, Linda, Java, OpenMP, PVM, MPI, Parallel C++,
Sisal, Orca, Mentat, SkieCL, BSP and other languages are described in some detail, and their features for high
performance applications implementation are discussed. Finally, we discuss future directions of research and
development in the parallel programming area with a special attention to novel approaches based on high-level
programming structures that make transparent to the users the architectural details of parallel computing
machines.
Key-Words: - parallel computing, parallel programming languages, software tools, concurrent programming.
3rd World Multiconference on CIRCUITS, SYSTEMS, COMMUNICATIONS AND COMPUTERS, pp. 32-42

1 Introduction
During the latest years parallel computers ranging
from tens to thousands of processing elements
became commercially available. They continue to
gain recognition as powerful engines in scientific
research, information management, and engineering
applications. This trend is driven by parallel
programming languages and tools that contribute to
make parallel computers useful in supporting a
broad range of applications.
 Several models and languages have been
designed and implemented to allow the design and
development of applications on parallel computers.
Parallel programming languages (called also
concurrent languages) allow the design of parallel
algorithms as a set of concurrent actions mapped
onto different computing elements [1]. The
cooperation between two or more actions can be
performed in many ways according to the selected
language. The design of programming languages
and software tools for parallel computers is essential

for wide diffusion and efficient utilization of these
novel architectures [2]. High-level languages
decrease both the design time and the execution time
of parallel applications, and make it easier for new
users to approach parallel computers.
 The aim of this paper is to give an overview of
the major parallel programming paradigms designed
in the latest decade to program parallel computers.
The paper discusses a set of representative
languages and tools designed to support different
models of parallelism. It discusses both parallel
languages currently used to develop parallel
applications in many areas from numerical to
symbolic computing and novel parallel
programming languages that will be used to program
parallel computers in the near future.
 Languages are classified into five main classes
according to the paradigm they use to express
parallelism. Next sections describe languages that
follow the imperative paradigm and that express
parallelism at the process or statement level. In
particular, section 2 discusses languages based on
the shared-memory model. These programming

languages present a view of memory as if it is
shared, although the implementation may or may not
be. Processes communicate and synchronize through
the use of shared data. Section 3 discusses
concurrent languages based on the distributed-
memory model. A distributed concurrent program
consists of a set of processes, located on one or
many computers, and cooperating by message
passing. This paradigm reflects the model of
distributed-memory architectures composed of a set
of processors connected by a communication
network.
 In Section 4, parallel object-oriented languages
are discussed. Objects and parallelism can be
integrated since the modularity of objects makes
them a natural unit for parallel execution. Section 5
examines both parallel functional and logic
programming languages. Parallel functional
languages express a fine-grain parallelism at the
level of expressions whereas concurrent logic
languages express parallelism at the clauses level.
The aim of concurrent logic languages is the
exploitation of the parallelism inside logic programs
by means of a parallel proof strategy. They offer
another declarative approach to programming
parallel computers.
 Finally, section 7 presents a collection of more
innovative approaches to parallel programming that
use a modular approach in designing parallel
programs. These languages are designed with
stronger semantics directed towards software
construction and correctness. Some of these may be
the programming languages to be used for the
development of parallel applications in the next
century.

2 Shared Memory Languages
This class of parallel languages use the shared-
memory model that is implemented by parallel
computers composed by several processors that
share a single memory space. The concept of shared
memory is a useful way to decouple program control
flow issues from issues of data mapping,
communication, and synchronization. Physical
shared memory is probably difficult to provide on
massively parallel architectures, but it is a useful
abstraction, even if the implementation it hides is
distributed. Significant parallel languages based on
the shared-memory models are Orca, Linda,
OpenMP, Java, Pthreads, Opus, SDL and Ease.
 One way to make programming easier is to use
techniques adapted from operating systems to
enclose accesses to shared data in critical sections.

These can then be further modified to make them
light-weight enough to use for single memory
references. Some machines provide test&op
instructions in the hardware.
 Another approach is to provide a high-level
abstraction of shared memory. One way to do this is
called virtual shared memory. The programming
language presents a view of memory as if it is
shared, but the implementation may or may not be.
The goal of such approaches is to emulate shared
memory well enough that the same number of
messages travel around the system when a program
executes as would have traveled if the program had
been written to pass messages explicitly. In other
words, the emulation of shared memory imposes no
extra message traffic.
 One way to emulate shared memory is to extend
techniques for cache coherence in multiprocessors to
software memory coherence. This involves
weakening the implementation semantics of
coherence as much as possible to make the problem
tractable, and then managing memory units at the
operating system level. The other way is to build a
system based on a useful set of sharing primitives.
This is the approach used by the Orca language.
 Orca. The Orca language is based on a
hierarchically structured set of abstractions [3]. At
the lowest level, reliable broadcast is the basic
primitive so that writes to a replicated structure can
rapidly take effect throughout a system. At the next
level of abstraction, shared data are encapsulated in
passive objects that are replicated throughout the
system. Orca itself provides an object-based
language to create and manage objects. Rather than
a strict coherence, Orca provides serializability: if
several operations execute concurrently on an
object, they affect the object as if they were
executed serially in same order. Orca has only been
implemented on small parallel machines, and its
performance depends on the relative infrequency of
writes compared to reads, so its scalable
performance is a question mark.
 Linda. A second orthogonal approach to
providing high level abstractions of shared memory
is embodied in Linda, which provides an associative
memory abstraction called tuple space [4]. Threads
communicate with each other only by placing tuples
in and removing tuples from this shared associative
memory. As a result, programs written in any
imperative language can be augmented with tuple
space operations to create a new parallel
programming language. These languages are called
coordination languages because the tuple space
abstraction coordinates, but is orthogonal to, the
computation activities.

 In Linda, tuple space is accessed by four actions:
one to place a tuple in tuple space, out(T), two to
remove a tuple from tuple space, in(T) and rd(T),
one by copying and the other destructively, and one
which evaluates its components before storing the
results in tuple space (allowing the creation of new
processes), eval(T). The efficient implementation of
tuple space depends on distinguishing tuples by size
and component types at compile time, and
compiling them to message passing whenever the
source and destination can be uniquely identified,
and to hash tables when they cannot. In distributed-
memory implementations, the use of two messages
per tuple space access is claimed, which is an
acceptable overhead.
 There are two difficulties with Linda, which have
been addressed by two extensions to it: SDL and
Ease. The first is that a single, shared, associative
memory does not provide any way to structure the
processes that use it, so that Linda programs have no
natural higher-level structure. The second is that, as
programs get larger, the lack of scoping in tuple
space makes the optimizations of tuple space access
described above less and less efficient. For example,
two sets of communications in different parts of a
program may, by coincidence, use tuples with the
same type signature. They will tend to be
implemented in the same hash table and their
accesses will interfere.
 OpenMP. OpenMP is a library (application
program interface - API) that supports parallel
programming on shared memory parallel computers
[5].
OpenMP has been developed by a consortium of
vendors of parallel computers (DEC, HP, SGI, Sun,
Intel, etc.) with the aim to have a standard
programming interface for parallel shared-memory
machines. (like PVM and MPI for distributed
memory machines).
 The OpenMP functions can be used inside
Fortran, C and C++ programs. They allow the
parallel execution of code (parallel DO loop), the
definition of shared data (SHARED) and
synchronization of processes. OpenMP allows a user
to define regions of parallel code (PARALLEL)
where it is possible to use local (PRIVATE) and
shared variables (SHARED); to synchronize
processes by the definition of critical sections
(CRITICAL) for shared variables (SHARED); to
define synchronization points (BARRIER). However,
support for general task parallelism is not included
in the OpenMP specification.
 Java. A shared-memory programming language
is Java that is popular because of its connection with
platform-independent software delivery on the Web

[6]. Java is an object-oriented language that supports
the implementation of concurrent programs by
process (called threads) creation (new) and
execution (start). For example, the following
instructions create two processes:

new proc (arg1a, arg1b, ..) ;
new proc (arg2a, arg2b, ..) ;

where proc is an object of a thread class.
Java threads communicate and synchronize through
condition variables. Shared variables are accessed
from within synchronized methods. Java programs
execute synchronized methods in a mutually
exclusive way generating a critical section.
However, notify and wait operations must be
explicitly invoked within such sections, rather than
being automatically associated with entry and exit.
 This concurrent programming model is useful for
using Java on a sequential computer (pseudo-
parallelism) or on shared-memory parallel
computers. To use Java on distributed-memory
parallel computers there are different solutions
outlined in the next sections.

3 Distributed Memory Languages
A parallel program in a distributed-memory parallel
computer (multicomputer) is composed of several
processes which cooperate by exchanging data. The
processes might be executed on different processing
elements of the multicomputer. In this environment,
a high-level distributed concurrent programming
language offers an abstraction level in which
resources are defined like abstract data types
encapsulated into cooperating processes. This
reflects the model of distributed memory
architectures composed of a set of processors
connected by a communication network.
 This section discusses imperative languages for
distributed programming. Other approaches such as
logic, functional, and object-oriented languages are
discussed in the following sections. Parallelism in
imperative languages is generally expressed at the
level of processes composed of a list of statements.
 Distributed memory languages and tools are: Ada,
CSP, Occam, Concurrent C, CILK, HPF, Fortran M,
PVM, MPI, C*, ZPL. Some of these are complete
languages, others are libraries or toolkits that are
used inside sequential languages.
 PVM. A distributed-memory programming tool
that is used currently to implement parallel
applications on heterogeneous computers is the
Parallel Virtual Machine (PVM) toolkit [7]. PVM
provides a set of primitives that can be incorporated
into existing procedural languages to implement

parallel programs. PVM is gaining widespread
acceptance as a methodology and toolkit for
heterogeneous distributed computing. Problems of
network delays and dynamically changing machine
loads are important considerations in trying to debug
or improve the performance of a PVM application.
 The PVM environment provides primitives for
process creation and message passing that can be
incorporated into existing procedural languages. To
create n copies of a process, PVM uses

nump = pvm_spawn("proc", …, …, n, pids);
PVM primitives for point-to-point and global
message passing are

• pvm_send(pid, mess);
• pvm_recv(pid, mess);
• pvm_mcast(pids, mess);
• pvm_bcast(pids, mess);

PVM is widely used as a programming environment
for workstation clusters; in fact, PVM runs on many
platforms from several vendors. In a PVM program,
a process can run on a workstation and another
process can run on a supercomputer. For these
reasons PVM is widely used and programs are
portable, although it offers a low-level programming
model. In fact, using PVM, programmers must
program all of the process decomposition,
placement, and communication explicitly.
 MPI. The Message Passing Interface or MPI [8]
is a de-facto standard message-passing interface for
parallel applications defined since 1992 by a Forum
with a participation of over 40 organizations. MPI
provides a rich set of messaging primitives (129),
including point-to-point communication,
broadcasting, barrier, reduce, and the ability to
collect processes in groups and communicate only
within each group. MPI has been implemented on
massively parallel computers, workstation networks,
PCs, etc., so MPI programs are portable on a very
large set of parallel and sequential architectures.
 An MPI parallel program is composed of a set of
processes running on different processors that use
MPI functions for message passing. Examples of
point-to-point communication primitives are
MPI_Send(msg, leng, type,…, tag, MPI_COM);
MPI_Recv(msg, leng, type,0, tag, MPI_COM, &st);
Group communication is implemented by the
primitives:
MPI_Bcast (inbuf, incnt, intype, root, comm);
MPI_Gather (outbuf, outcnt, outype, inbuf, incnt,..);
MPI_Reduce (inbuf, outbuf, count, typ, op, root,...);
For program initialize and termination the MPI_init
MPI_Finalize functions are used. Like PVM, MPI
offers a low-level programming model, but it is
widely used for its portability. Should be mentioned

that MPI 1 does not make provision for process
creation. Although , in the MPI 2 version additional
features should be provided for
• active messages,
• process startup, and
• dynamic process creation.
 HPF. Another interesting language is High
Performance Fortran (HPF) [9]. HPF is the result of
an industry/academia/user effort to define a de facto
consensus on language extensions for Fortran-90 to
improve data locality, especially for distributed-
memory parallel computers. HPF is a language for
programming computationally intensive scientific
applications. A programmer writes the program in
HPF using the SPMD style and provides information
about desired data locality or distribution by
annotating the code with data-mapping directives.
Examples of data-mapping directives are Align and
Distribute:

!HPF$ Distribute D2 (Block, Block)
!HPF$ Align A(I,J) with B(I+2, J+2)

An HPF program is compiled by an architecture-
specific compiler. The compiler generates the
appropriate code optimized for the selected
architecture. According to this approach, HPF could
be used also on shared-memory parallel computers.
 HPF is based on exploitation of loop parallelism.
Iterations of the loop body that are conceptually
independent can be executed concurrently. For
example, in the following loop the operations on the
different elements of the matrix A are executed in
parallel.

ForAll (I = 1:N, J = 1:M)
A(I,J) = I * B(J)
End ForAll

 C*. A language that implements the SIMD model
is the C* data-parallel language [10]. This language
was designed by Thinking machines Corp. to
program the Connection Machine. However, it can
be used to program several multicomputers using the
dataparallel approach. C* is an extension of C
language that incorporates features of the data SIMD
programming model.
 The language lets programmer express
algorithms as if data could be mapped onto an
unbounded number of processors. The compiler
automatically maps data onto processing elements.
When data are mapped to their processing elements,
program constructs can be used to express parallel
operations. Although C* implement the SIMD
model, efficient compilers for C* on MIMD parallel
computers are available.

4 Object-Oriented Parallel Languages
The parallel object-oriented paradigm is obtained by
combining the parallelism concepts of process
activation and communication with the object-
oriented concepts of modularity, data abstraction
and inheritance [11].
 An object is a unit that encapsulates private data
and a set of associated operations or methods that
manipulate the data and define the object behavior.
The list of operations associated with an object is
called its class. Object-oriented languages are
mainly intended for structuring programs in a simple
and modular way reflecting the structure of the
problem to be solved.
 Sequential object-oriented languages are based
on a concept of passive objects. At any time, during
the program execution only one object is active. An
object becomes active when it receive a request
(message) from another object. While the receiver is
active, the sender is passive waiting for the result.
After returning the result, the receiver becomes
passive again and the sender continues. Examples of
sequential object-oriented languages are Simula,
Smalltalk, C++, and Eiffel.
 Objects and parallelism can be nicely integrated
since object modularity makes them a natural unit
for parallel execution. Parallelism in object-oriented
languages can be exploited in two principal ways:
• using the objects as the unit of parallelism

assigning one or more processes to each object;
• defining processes as components of the

language.
 In the first approach languages are based on
active objects. Each process is bound to a particular
object for which it is created. When one process is
assigned to an object, inter-object parallelism is
exploited. If multiple processes execute concurrently
within an object intra-object parallelism is exploited
also. When the object is destroyed the associated
processes terminate.
 In the latter approach two different kinds of
entities are defined, objects and processes. A process
is not bound to a single object, but it is used to
perform all the operations required to satisfy an
action. Therefore, a process can execute within
many objects changing its address space when an
invocation to another object is made.
 Parallel object-oriented languages use one of
these two approaches to support parallel execution
of object-oriented programs. Examples of languages
which adopted the first approach are ABCL/1, Actor
model, MPL, Charm++, and Concurrent Aggregates.
In particular, the Actor model is the best-known

example of this approach. Although it is not a pure
object-oriented model, we include the Actor model
because it is tight related to object-oriented
languages.
 On the other hand, languages like HPC++, Argus,
Presto, Nexus, and Java use the second approach. In
this case, languages provide mechanisms for
creating and control multiple processes external to
the object structure. Parallelism is implemented on
top of the object organization and explicit constructs
are defined to ensure object integrity.
 MPL. The Mentat Programming Language is a
parallel extension of C++ that combines the object-
oriented model with the data-driven computation
model [12]. In the data-driven model parallel
operations are executed on independent data when
they are available. This model supports high degree
of parallelism, while the object-oriented paradigm
hides much of the parallel environment from a user.
 MPL implements both inter-object parallelism
(one process per object) and intra-object parallelism
(more processes per object). The compiler generates
code to build and execute data dependency graphs.
Thus parallelism in MPL is largely transparent to the
programmer. Parallelism implemented on objects of
the mentat class. In this approach, the programmer
makes granularity and partitioning decisions using
mentat class definition constructs, and the compiler
and the run-time system will manage
communication and synchronization.
 HPC++. High Performance C++ [13] is a
standard library for parallel programming based on
the C++ language. The HPC++ consortium consists
of people from research groups within Universities,
Industry and Government Labs that aim to build a
common foundation for constructing portable
parallel applications as alternative to HPF. HPC++
is composed of two levels:
• Level 1 consists of a specification for a set of

class libraries based on the C++ language.
• Level 2 provides the basic language extensions

and runtime library needed to implement the full
HPC++.

 There are two conventional modes of executing
an HPC++ program. The first is multi-threaded
shared memory where the program runs within one
context. Parallelism comes from the parallel loops
and the dynamic creation of threads. This model of
programming is very well suited to modest levels of
parallelism. The second mode of program execution
is an explicit SPMD model where n copies of the
same program are run on n different contexts.
Parallelism comes from parallel execution of
different tasks. This model is well suited for
massively parallel computers.

 Distributed Java. Java is an object-oriented
language that was born for distributed computing
programming, although it embodies a shared-
memory parallel programming model. To develop
parallel distributed programs using Java, a
programmed can use
• sockets: at the lowest programming level Java

provides a set of socket-based classes with
methods (socket APIs) for inter-process
communications using datagram and stream
sockets.

• RMI: the Remote Method Invocation toolkit [14]
provides a set of mechanisms for
communication among Java methods that
resides on different computers having separate
address spaces.

• Java + CORBA: At higher level, Java programs
can be combined with CORBA [15] object
servers for implementing parallel applications
running on several remote hosts connected by a
communication network (e.g., the Internet).

In the latest two years several efforts have been done
to extend Java for high performance scientific
applications (e.g., the Java Grande consortium). The
outcome of these efforts are a set of languages and
tools such as: HPJava, MPIJava, JMPI, JavaSpace,
jPVM, JavaPP, and JCSP.

5 Parallel Declarative Languages
Parallel functional languages and parallel logic
languages are two declarative approaches to parallel
programming, concentrating on what is to be done
rather than how it is done. Programs do not specify
in any direct way how they are to be executed in
parallel, so that decomposition does not need to be
explicit. It is still an open question how efficiently
these approaches can be implemented.
 Parallel Logic Languages. Parallel logic
programming is born from the integration of logic
programming and parallel programming to evaluate
logic clauses in parallel. There are two major forms
of parallelism in logic programs are:
• AND parallelism and
• OR parallelism.
OR parallelism means the parallel evaluation of
several clauses whose head unifies with the goal. If
we have the subgoal ?p(X) and the clauses:

p(X) :- q(X).
p(X) :- r(X).
p(X) :- s(X).

OR parallelism is exploited by unifying in parallel
the subgoal with the head of the three clauses. AND
parallelism consists of the parallel evaluation of

each subgoal that composes the current goal. If the
goal to be solved is

? p(X), q(Y).
using AND-parallelism, subgoals p(X) and q(Y) are
solved in parallel.
 Parallel logic programming models can be
divided according to how they exploit parallelism.
According to the explicit parallelism approach, the
programmer specifies parallelism in a logic program
by annotations [16]. Languages based on this
approach are PARLOG, Concurrent Prolog, GHC,
Delta-Prolog, and Strand. On the other hand in
implicit parallel logic languages parallelism is
extracted both during static analysis and at run-time.
System that use this model are PPP, AND/OR
Process model, ANDORRA, and Reduce/OR [17].
 Parallel Functional Languages. There are some
issues in extracting parallelism in a functional
setting. The first is that normal order evaluation of
expressions does not generate very much
parallelism. Because it is so conservative, nothing is
computed until it is certain to be needed, which
introduces long dependent chains of decisions about
which parts of a computation are needed.
Implemented naively, the only opportunity for
parallelism in a normal order reductive
implementation of a functional program is in
computing the strict arguments built-in functions.
 The second issue is related to the order of
functions that are allowed in the programming
language. At one extreme is higher-order functional
programming, exemplified by Haskell, in which
functions of all orders are permitted. At the other
extreme is dataflow in which all functions are first-
order. Higher-order functional programming can be
a very powerful and compact style, but it is hard to
implement implementations that approach the
performance of imperative languages are only just
becoming available after fifteen years of research.
The third issue is the trade-off between the implicit
approach (the compiler discover parallelism) and the
explicit approach where programmers must specify
parallelism via annotations. Example of parallel
functional languages are Multilisp, ParAlfl, SISAL,
Concurrent Lisp, *Lisp, and Qlisp.
 The Multilisp language is an extension of Lisp in
which opportunities for parallelism are created using
futures [18]. A future applied to an expression
(future (x)) creates a task to evaluate that expression
(which begins immediately, that is eagerly).
 Sisal (Streams and Iterations in Single Assigment
Language) is an interesting parallel functional
language. Most of the parallelism in Sisal programs
comes from parallel loops. Sisal syntax is very like
conventional imperative languages, but the meaning

of most statements is different in important ways.
Sisal is a single-assignment language, so that only a
single value can be assigned to each named variable
in each scope. Thus Sisal instructions have the same
semantics of functional expressions. In fact, to
assign a new value to a variable on the basis of its
previous value the keyword old must be used:

i:= old i + 1;
Exists a powerful Sisal compiler for shared-memory
parallel machines. Many Sisal scientific programs
have equal or better speedups than equivalent
Fortran programs [19].

6 Composition Based Languages
This section describes novel models and languages
for parallel programming that have not yet become
widely accepted, but have properties that make them
of interest. Some are not yet complete programming
languages but programming models or abstract
machines.
 The general trend that is discernible in these
languages, to those discussed in the previous
sections, is that they are designed with stronger
semantics directed towards software construction
and correctness. There is also a general realization
that the level of abstraction provided by a parallel
programming language should be higher than was
typical of languages designed in the past decade.
This is no doubt partly due to the growing role of
parallel computation as a methodology for solving
problems in many application areas.
 The languages described in this section can be
divided into two main classes:
§ Languages based on predefined structures that

have been chosen to have good implementation
properties or that are common in applications
(restricted computation forms or skeletons)
[20];

§ Languages that use a compositional approach -
a complex parallel program can be written by
composing simple parallel programs while
preserving the original proprieties [21].

 Skeletons are predefined parallel computation
forms that that embody both data- and control-
parallelism. They abstract away from issues such as
the number of processors in the target architecture,
the decomposition of the computation into
processes, and communication supporting high-level
structured parallel programming. However, using
skeletons cannot be wrote arbitrary programs, but
only those that are compositions of the predefined
structures. The most used skeletons are geometric,
farm, divide&conquer, and pipeline. Examples of

skeleton languages are SCL, SkieCL, BMF (Bird-
Meertens formalism), Gamma, NESL, and BSPlib.
 SkieCL. The Skie Coordination Language [22]
uses a skeleton-based model and implements a set of
parallel programming skeletons such as:
§ pipe for pipeline computations,
§ farm for defining a set of server processes,
§ tree to run a process tree,
§ geometric for implementing data parallelism,
§ loop for implementing loop parallelism.
Sequential code of processes inside skeletons is
sequential (C, Fortran, C++, Java). For example
worker farms, in P3L are modeled by means of the
farm constructor. When the skeleton is executed, a
number of workers W are executed in parallel with
the two P processes (the emitter and the collector).
Each worker executes the function f() on its data
partition.
 BSPlib. The BSP model is not a pure skeleton
model, but it represents a related approach in which
the structured operations are single threads.
Computations are arranged in supersteps, each of
which is a collection of these threads. A superstep
does not begin until all of the global
communications initiated in the previous superstep
have completed (so that there is an implicit barrier
synchronization at the end of each superstep)
computational results are available to all processes
after each superstep. The Oxford BSPlib is a toolkit
that implements the BSP operations in C and Fortran
programs [23]. Some examples of BSPlib functions
are
§ bsp_init(n) to execute n processes in parallel,
§ bsp_sync to synchronize processes,
§ bsp_push_reg to make a local variable readable

by other processes,
§ bsp_put and bsp_get to get and put data to/from

another process,
§ bsp_bcast to send a data towards n processes.
The BSPlib provides automatic process mapping
and communication patterns.
Significant examples of compositional languages
are PCN, Compositional C++, and Seuss. PCN and
Compositional C++, are second-generation parallel
programming languages in the imperative style.
Both are concerned with composing parallel
programs to produce larger programs, while
preserving the original properties.
 PCN. PCN programs consist of collections of
procedures, with internal structure in the Occam
style (parallel, sequential, or choice collections of
statements) [24]. In PCN communication is handled
by single-use variables, which may be written once
within their scope but may be read multiple times
(blocking if the write has not yet occurred). Streams

can be implemented by recursive procedure calls.
PCN also includes higher-level structuring tools:
arrays of communication variables, sets of processes
and an associated virtual topology for reuse, and
structured sets of cells (which start to resemble
skeletons). There are also annotation features: built-
in functions to determine topology, number of
processors, and location of a particular piece of
code, which allow procedures to modify their
actions according to implementation context.
 CC++. Compositional C++ [25], contains many
of the same ideas but in an object-oriented
framework that forms a superset of C++. Three
constructors, par, parfor, and spawn, can be used to
structure code. Communication again uses single-
use variables, called sync variables, and using the
same syntax as constants. Unlike PCN, threads can
share other variables, but the final value of a
variable that is written by multiple threads is only
guaranteed to be one of the possible values. Logical
processor objects allow code to be grouped to
preserve locality, and provide a name space.

7 Conclusion
Parallel programming languages support the
implementation of high-performance applications in
many areas: from the Internet to computational
science.
 New models, methods and languages proposed
and implemented in the latest years allow users to
develop more complex programs with minor efforts.
In the recent years we registered a trend from low-
level languages towards more abstract languages to
simplify the task of designers of parallel programs
and several middle-level models has been designed
as a tradeoff between abstraction and high
performance.
 These efforts may bring parallel programming to
the right direction for supporting a wider use of
parallel computers. In fact, parallel computation can
be a key technology of the next century if
§ languages and programs will be architecture

independent;
§ the complexity of parallel programming will not

greater that the complexity of sequential
programming; and

§ there will be portable and standard parallel
software.

References:

[1] D. Skillicorn, D. Talia, Programming
Languages for Parallel Processing, IEEE
Computer Society Press, 1994.

[2] D. Skillicorn, D. Talia, Parallel Programming
Models and Languages, ACM Computing
Surveys, Vol. 30, No. 2, 1998, pp. 123-169.

[3] H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum,
Orca: A Language for Parallel Programming of
Distributed Systems, IEEE Transactions on
Software Engineering, Vol. 18, No. 3, 1992, pp.
190-205.

[4] N. Carriero, D. Gelernter, Application
Experience with Linda. Proc. ACM/SIGPLAN
Symposium on Parallel Programming, Vol. 23,
1988, 173–187.

[5] OpenMP Consortium, OpenMP C and C++
Application Program Interface, Version 1.0,
1997.

[6] D. Lea, Concurrent Programming in Java:
Design Principles and Patterns, Addison-
Wesley, 1997.

[7] A. Beguelin, J. Dongarra, A. Geist, R. Manchek,
K. Moore, and V. Sunderam, PVM and HeNCE:
Tools for heterogeneous network computing,
Software for Parallel Computation, Vol. 106 of
NATO ASI Series F, Springer-Verlag, 1993.

[8] M. Snir, S.W. Otto, S. Huss-Lederman, D.W.
Walker, and J. Dongarra, MPI: The Complete
Reference, The MIT Press, 1996.

[9] D.B. Loveman, High Performance Fortran, IEEE
Parallel & Distributed Technology, pp. 25-43,
1993.

[10] M.J. Quinn, P.J. Hatcher, Data-parallel
Programming on Multicomputers. IEEE
Software, pp. 69-76, 1990.

[11] A. Yonezawa et al., Object-Oriented
Concurrent Programming, MIT Press, 1987.

[12] A.S. Grimshaw, Easy-to-use Object-oriented
Parallel Processing with Mentat, IEEE
Computer, pp. 39-51, 1993.

[13] S. Diwan, D. Gannon, A Capabilities Based
Communication Model for High-Performance
Distributed Applications: The Open HPC++
Approach, Proc. IPPS/SPDP'99, 1999.

[14] Javasoft, RMI, The JDK 1.1 Specification,
1997.

[15] S. Baker, V. Cahill, and P. Nixon, Bridging
Boundaries: CORBA in Perspective, IEEE
Internet Computing, Vol. 1, No. 5, pp. 52-57,
1997.

[16] D. Talia, A Survey of PARLOG and
Concurrent Prolog: The Integration of Logic and
Parallelism, Computer Languages, Vol. 18, No.
3, pp. 185-196, 1993.

[17] D. Talia, Parallel Logic Programming Systems

on Multicomputers, Journal of Programming
Languages, Vol. 2, No. 1, pp. 77-87, 1994.

[18] R.H. Halstead, Parallel Symbolic Computing,
IEEE Computer, Vol. 19, No. 8, pp. 35-43, 1986.

[19] D. Bollman, J. Seguel, and J. Feo, A Functional
Approach to Radix-r FFTS, Parallel and
Distributed Computing Practices, Vol. 1, No. 1,
pp. 51-74, 1998.

[20] M. Cole, Algorithmic Skeletons: Structured
Management of Parallel Computation, Research
Monographs in Parallel and Distributed
Computing, Pitman, 1989.

[21] K.M. Chandy, C. Kesselman, The Derivation of
Compositional Programs, Proceedings of the
Joint Int. Conf. and Symp. on Logic
Programming, pp. 3-17, 1992.

[22] B. Bacci, et al., SkIECL: User's Guide,
Quadrics Supercomuputers World Ltd., 1998.

[23] J.M.D. Hill et al., BSPlib: The BSP
Programming Library, Parallel Computing, Vol.
24, No. 14, pp. 1947-1980, 1998

[24] I. Foster, B. Olson, Productive parallel
programming: the PCN approach, Scientific
Programming, Wiley, pp. 51-66,1992.

[25] K.M. Chandy, C. Kesselman, CC++: A
Declarative Concurrent Object-Oriented
Programming Notation, Research Directions in
Concurrent Object Oriented Programming, MIT
Press, 1993.

