
Connection between BPTT and RTRL

THOMAS HANSELMANN, ANTHONY ZAKNICH and YIANNI ATTIKIOUZEL

Centre for Intelligent Information Processing Systems
Department of Electrical and Electronic Engineering

The University of Western Australia
Nedlands, WA 6907, AUSTRALIA

thomash@ee.uwa.edu.au, tonko@ee.uwa.edu.au, yianni@ee.uwa.edu.au
http://ciips.ee.uwa.edu.au

Abstract: - This paper shows the connection between the Backpropagation Through Time (BPTT)

algorithm, its truncated forms with truncation depth h, and the Recurrent Real Time Learning (RTRL)

algorithm. The comparison is done by looking at a fully connected recurrent network, which is based

on the same error function and calculations, using exact ordered derivatives. Two kind of formulas,

based on total ordered derivatives, for BPTT (h) are given and proven to be equivalent. Of the two

formulae, the second one, can be interpreted by a target modi�cation in the case of h ! 1. Further,

a combination of BPTT and RTRL is proposed to account for possible instabilities caused by weight

adaptation. An overview of BPTT and RTRL and their implementations as well as their interpretations

and uses are outlined.

Key-Words: - BPTT, RTRL, ordered derivatives, recurrent networks, backpropagation, forward-

propagation.

1 Introduction

When BPTT is applied to recurrent networks,
it may be derived by a temporal unfolding that
can be developed into a layered feedforward net-
work, where the topology grows by one layer
at every time step and then a standard back-
propagation can be applied. RTRL derives its
name from the fact that adjustments to the synap-
tic weights, in a fully connected recurrent net-
work, are made in real time, while the network
continues to perform its signal processing func-
tion [1]. The objective of the learning process is
to minimize some goal or target function. The
target function could be the sum of instantaneous
errors, E(t), over some time. However, it often
makes sense to weight these errors with a dis-
count factor,
, so that the target function to be
minimized looks like Tar =

P
1

t=k

t�kE(t) where

E(t) = 1=2
P

j2Outputs(dj(t) � xj(t))
2, with xj(t)

and dj(t) the actual and desired output j at time
t, respectively. The discount factor has also an
intuitive meaning when written as
 := 1

1+p
with

p > 0 acting as an interest rate which accounts

for later error costs, E(t), that have to be paid at
time k. With this interpretation of the errors, the
target, Tar(k;h), can be seen as the cost-to-go
function of dynamic programming from the state
x(k) at time k up to the state x(k+h). In this con-
text, the minimal cost-to-go function is of special
interest, because it gives the minimal long-term
cost in the interval h. However, this cost-to-go
function is often not trivial to �nd because it is
normally a complex function. In adaptive critic
designs (ACD) which act as an approximation to
dynamic programming, the cost-to-go is approxi-
mated by a critic-network, acting as a function ap-
proximator. Since recurrent networks are known
to be more powerful than simple feedforward net-
works of the same size, and also able to capture
temporal behavior, they are preferred for this task
[2]. A drawback is that they are more di�cult to
adapt, but with the application of BPTT (h) this
simpli�es to the same static-backpropagation of a
feedforward network.
A quite general recurrent network structure is
given by the equations (1),(2) and (3), which are
also known as the generalized recurrent multilayer

perceptron (MLP), see Fig. 1.

xi(t) :=xexti (t); 1 � i � m (1)

neti(t) :=

i�1X
j=1

wij(t)xj(t) +

NX
j=m+1

w1
ij(t)xj(t� 1);

m+ 1 � i � N (2)

xi(t) := f(neti(t)); m+ 1 � i � N (3)

Tar :=Tar(k;h) =

k+hX
t=k

t�kE(t) (4)

with E(t) =
1

2

NX
i=m+1

(di(t)� xi(t))

This is a network ordered in structure and in

time. To satisfy the objective, using a steepest

descent algorithm, the total derivatives of the tar-

get function, Tar, with respect to the parame-

ters, wij(k) and w1
ij(k), have to be calculated.

This can be done e�ciently using the extended

chain-rule introduced by Werbos [3, 4], [5], by

the algorithm called BPTT . In practice the tar-

get function will be a �nite sum, truncated to

some depth h, yielding BPTT (h). Two kinds of

formulas, based on total ordered derivatives, for

BPTT (h) are given and proved to be equivalent.

RTRL uses the same target function but instead

of calculating the exact derivatives it uses instan-

taneous estimates,
@E(t)

wij(t)
, of the true or total gra-

dient, F wij(t), of the target with respect to the

weights. It is then shown, that by using a moving

target, a similar derivation can be made to yield

ordered derivatives, that are analogous to those

of BPTT . RTRL can then be interpreted as a

special case with truncation depth h = 0.

Further, it is argued that combiningRTRL and

BPTT (h) could result in a more stable weight up-

date, when using RTRL as an estimator of future

weight trajectories while doing BPTT (h), than

using only RTRL or BPTT .

2 Problem Formulation

Calculation of the total gradient of the target
function Tar with respect to the nodes xi(t), is
straightforward by using the extended chain rule

F xi(t) �
@+Tar

@xi(t)

=
@Tar

@xi(t)
+

X
ld(xi(t))

@+Tar

@ld(xi(t))

@ld(xi(t))

@xi(t)
(5)

where ld(xi(t)) are the later dependencies of xi(t)

in the ordered system. The external nodes are

given by (1) and are the external inputs. Without

loss of generality, it can be assumed that the �rst

input, xext1 (t) � 1 and represents a �xed bias. We

will always assume that all non-external nodes,

xj(t) (i.e. j � m + 1), will be used in the target

calculations, so the formulas stay quite general. If

a node should not be included into the target cal-

culation the direct error ej(t) := dj(t)� xj(t) has

to simply be set to zero in the following formulae:

2.1 BPTT(h)

For BPTT (h) equation (5) yields (see Appendix
A)

F xi(t) = �
t�k(di(t)� xi(t))

+

NX
j=i+1

F xj(t)f
0
(netj(t))wji(t) (6)

+

NX
j=m+1

F xj(t+ 1)f 0(netj(t+ 1))w1
ji(t+ 1)

F xi(t) � 0 8t > k + h (7)

F wij(t) = F xi(t)f
0
(neti(t))xj(t) (8)

F w1
ij(t) = F xi(t)f

0
(neti(t))xj(t� 1) (9)

�wij(k) = �� F wij(k) (10)

�w1
ij(k) = �� F w1

ij(k) (11)

The BPTT (h) algorithm calculates the weight

updates at time k, by calculating Tar(k;h) and

then going backwards in time and structure, from

t = k + h and i = N; ::; 1 using equations (6) and

(7). Finally, doing the updates according to (10)

and (11), with a learning rate � > 0.

An equivalent, but slightly more e�cient formu-
lation for BPTT (h) can be achieved by de�ning

t�k ~F xi(t) := F xi(t) (12)

Starting with t= k+h and i=N;::;1 yields F xi(t)

=�
hei(t)+
PN

j=i+1F xj(t)f
0(netj(t))wji(t) where

all F xj(t) contain a factor
h =
t�k

such that one can write ~F xi(t) = �ei(t) +
PN

j=i+1
~F xi(t)wji(t). Going one time step back-

wards, i.e. t = k + h � 1, it follows from (6),

that all the summands contain a factor
h�1 and

h for the �rst and the second sum, respectively.
Therefore one can write

~F xi(t) = �(di(t)� xi(t))

+

NX
j=i+1

~F xj(t)f
0
(netj(t))wji(t) (13)

+

NX
j=m+1

~F xj(t+ 1)f 0(netj(t+ 1))w1
ji(t+ 1)

This is slightly more e�cient, because there is

only one multiplication by
, of the second sum,

but no multiplication of a power of
, in the direct

error term. At time k, ~F xi(t) is equal to F xi(t)

due to (12) and so equation (13) could be used in

the BPTT (h) algorithm instead of (6). However,

for all other times t within k < t � k+h the total

derivatives di�er according to (12).

2.2 RTRL

A very compact formulation of RTRL can be
found in [1]. Following that derivation, but
extending it slightly to account for ordered
dependencies between output nodes (xj(t) =
xj(xm+1(t);::;xj�1(t)) at time t. De�ning a concate-

nated input vector, �j , of dimension m+2(N�m)

�j(t) :=

2
66666666666666666666664

xext1 (t)
.
.
.

xextm (t)

xm+1(t� 1)

.

.

.

xN (t� 1)

xm+1(t)
.
.
.

xj�1(t)

0

.

.

.

0

3
77777777777777777777775

=

�
x
ext

(t)

x
j
(t)

�
(14)

and appropriate weight vectors, wj(t) (m + 1 �
j � N), whose elements connect elements of
�j(t) with node xj(t), and state vector, x(t) =

[xm+1(t); ::; xN (t)]
T , the system (1-3) can be writ-

ten as

x(t) :=

2
64
xm+1(t)

.

.

.

xN (t)

3
75 =

2
64
f(wT

m+1(t)�
m+1

(t))
.
.
.

f(wT
N(t)�N(t))

3
75 (15)

Di�erentiating (15) with respect to the weights
wj(t) using the chain rule once, yields

@xT (t)

@wj(t)
= �(t)

"
@xj

T
(t)

@wj(t)
W

int
(t) +UjT

(t)

#
(16)

�(t) := diag(f 0(wT
m+1(t)�

m+1
(t)); : : : ;

f 0(wT
N (t)�N(t))) (17)

W(t) :=

�
W

ext
(t)

W
int

(t)

�
=

�
w
ext
m+1(t); ::;w

ext
N (t)

~w
int
m+1(t); ::; ~w

int
N (t)

�
(18)

U
j
(t) :=

2
4 0

�j
T
(t)

0

3
5 (j �m)

th
row (19)

where wint
j (t) is the subvector of wj(t) without

the elements connecting node xj(t) to external

nodes xextk (t) in �j(t), and, ~wj(t) is equal to w(t)

with elements ~wjl(t) set to 0 for l � j + N �m.

Equation (16) now describes recursively, the state

dynamics (note that the �rst N �m elements of

x(t) are equal to those of xj(t+ 1)).
Having an instantaneous error E(t) =

1
2
e
T (t)e(t) with e(t) = d(t) � x(t), as in equa-

tion (4), also the same target, Tar(k;h), could be
used. It is

@E(t)

@wj(t)
=

@eT (t)

@wj(t)
e(t) (20)

= �
@xT (t)

@wj(t)
e(t) (21)

@+Tar(k;h)

@wj(k)
=

k+hX
t=k

t�k
@+E(t)

@wj(k)
(22)

= �

k+hX
t=k

t�k
@+xT (t)

@wj(k)
e(t) (23)

�wj(k) = ��
@+Tar(k;h)

@wj(k)
(24)

= �

k+hX
t=k

t�k
@+xT (t)

@wj(k)
e(t) (25)

h=0
= �

@xT (k)

@wj(k)
e(k) (26)

However, linking
@xT (t)

@wj(t)
together with the

gradient,
@+Tar(k;h)

wj(t)
, of the total derivative of the

target with respect to the weights, is done easily
only when h = 0, meaning the total gradient is
approximated by the instantaneous gradient. If
one keeps the weights constant during the target
window from time k up to k + h an easy relation
can be stated using ordinary derivatives

�wj(k)
wj(t)=wj(k)

= �

k+hX
t=k

t�k
@+xT (t)

@wj(t)
e(t)

= �

k+hX
t=k

t�k
@xT (t)

@wj(t)
e(t) (27)

To make theRTRL algorithm complete, the ini-

tial condition for the recursive formula (16) needs

to be given. Assuming the network is in a constant

state, we can set
@xT (0)

@wj(0)
= 0 for all j. One poten-

tial problem of the RTRL algorithm is that when

the learning rate � is too large, additional feed-

back produced by the weight changes can cause

instability. Another possibility would be to up-

date weights only every hth time step (h > 1).

This would be a "forward propagation through

time".

2.3 Change of targets

So far we have been looking at BPTT (h) with
a �xed target, Tar(k;h), at a certain time k.
Now, we consider 'shifted' and 'moving' targets,
Tar(k + q;h) and Tar(t + q;h), for total deriva-
tives with respect to quantities y at time t + q,
where q > 0 and de�ne them as

Fs y(t+ q) �
@+Tar(k + q;h)

@y(t+ q)
shifted (28)

Fm y(t+ q) �
@+Tar(t+ q;h)

@y(t+ q)
moving (29)

Tar(k + q;h) =

k+q+hX
t=k+q

t�(k+q)E(t) (30)

where equation (30) is simply equation (4) for
k := k + q. The di�erence between 'shifted' and
'moving' target is that with the former k is �xed,
whereas in the latter, the target calculation al-
ways starts at the current time t + q (q is just a
constant introduced to make the formulas more
similar). Using equation (6) again, but this time
with a target Tar(t;h) yields

Fm xi(t) = �(di(t)� xi(t))

+

NX
j=i+1

Fm xj(t)f
0
(netj(t))wji(t) (31)

+

NX
j=m+1

F xj(t+ 1)f 0(netj(t+ 1))wint
ji (t+ 1)

F xi(t
0
) � 0 8t0 > t+ h (32)

It is obvious that the 'shifted' targets are related
by equation (34) and for q = 1 this yields equation
(35).

qTar(k+q;h) =
q
k+q+hX
t=k+q

t�(k+q)E(t) =

k+q+hX
t=k+q

t�kE(t)

(33)

=Tar(k;h)�

k+q�1X
t=k

t�kE(t) +

k+h+qX
t=k+h+1

t�kE(t) (34)

Tar(k;h)=
Tar(k+1;h)+E(k)�
h+1E(k+1+h)

(35)

Using equation (35) to calculate

@+Tar(k;h)

@xj(t+ 1)
=

@+(
Tar(k+1;h)+E(k)�
h+1E(k+1+h))

@xj(t+ 1)
(36)

=

@+Tar(k+1;h)

@xj(t+1)
�
h+1

@+E(k+1+h)

@xj(t+ 1)
(37)

h!1
=

@+Tar(k+1;h)

@xj(t+1)
=
 Fs xj(t+ 1) (38)

The term
@+E(k)

@xj(t+1)
is zero, because t � k always,

and therefore E(k) does not depend on xj(t+ 1).
Using equation (37) with k := t and substitution

of
@+Tar(t;h)

@xj(t+1)
(= F xj(t + 1)) in equation (31) to

have a 'moving' target yields

Fm xi(t) = �(di(t)� xi(t))

+

NX
j=i+1

Fm xj(t)f
0
(netj(t))wji(t)

+

NX
j=m+1

h�
Fm xj(t+ 1)�
h

@+E(t+1+h)

@xj(t+ 1)

�

� f 0(netj(t+ 1))w1
ji(t+ 1)

i
(39)

Fm xi(t
0
) � 0 8t0 > t+ h (40)

But this has the form of equation (13) when

h ! 1 and therefore can be interpreted as

BPTT (1) with moving targets. Fm xi(t) are

now the total derivatives of the moving targets,

Tar(t;h), with respect to the nodes xi(t).

On the other hand for h = 0 (note the second

sum in (39) is always 0 when h = 0) it can be

considered as BPTT (0) with moving target (or

�xed, since they are the same for h = 0) which

is the instantaneous gradient of the current error

E(t) with respect to the node xi(t), or with re-

spect to the weights wij(t) when using (8), (9).

The latter target is exactly as in RTRL.

Another interesting point is that when
 ! 1,

F xi(t) of equation(6) must be equal to Fm xi(t)

of equation (39) with h ! 1, and assuming

E(1) � 0. This means that the past errors do

not count in weight updates but only future errors

contribute to weight updates. This is not surpris-

ing because future errors have an in�nite support,

whereas the number of past errors from some past

starting time up to the current time t, is always

�nite.

3 Problem Solution

In the previous sections we derived two formu-

lae for BPTT (h) and showed the relation with

RTRL. Now we would like to improve the weight

updates in the BPTT (h) algorithm by estimat-

ing the in
uence of future weight updates. As it

can be seen from equation (6) the current weights,

wij(t), at times t are used to calculate the to-

tal gradient, F wij(k), which is then used to up-

date the weights according to (8) and (9), respec-

tively. However, it would be desirable to know

how this weight update at time k will in
uence

future values and therefore have estimates, ŵji(t),

of wji(t) (and similar for w1
ji). It is proposed that

these estimates be calculated with the RTRL al-

gorithm, which would then run in parallel with

the forward calculation in BPTT (h), which would

use the estimated weights instead of the weights

given at starting (or updating) time k. How-

ever, these weights would have to be stored for

use in the backpropagation sweep as well. This

is di�erent from the combination of RTRL and

BPTT proposed by Williams and Zipser [6] which

we have given a summary, adapted to our nota-

tion, in the appendix B. Since RTRL is much

more computationally intensive for large networks

than BPTT , one could also use BPTT (h0) with

(h0 < h) to get estimated weights and then use

them in the BPTT (h) calculation. To reduce

computation further, one could also just use esti-

mates, ^Tar(k;h), for the target based on expected

weight changes during its calculation from time k

to k + h.

Before it was assumed that in the RTRL algo-

rithm at the start time k = 0 the instantaneous

gradient
@xT (0)

@wj(0)
is zero, however, one could now

use BPTT (h) for initial values.

4 Conclusions

While BPTT (h) was introduced some time ago,

[3, 7], and reinvented many times (see refer-

ences in [6]), here it is developed in detail us-

ing the pragmatic notation of ordered deriva-

tives introduced by Werbos. Two interpreta-

tions (equation (12) and (39)) of the ordered

derivatives are given for the direct calculated or-

dered derivatives (6). Further, RTRL is restated,

taking account of the structural order (xj(t) =

xj(t)(x1(t); ::; xj�1(t))), so that it can be directly

compared with BPTT . With the update only on

every hth time step, RTRL can be seen as forward

propagation through time with truncation depth

h. Also, a combination of RTRL and BPTT has

been proposed. However, to reduce computational

e�ort, it may be possible to estimate nodes, x̂i(t),

or even only targets, ^Tar(k;h), based on the ex-

pected in
uence of the next weight update and

calculate the e�ective weight update �wij(k) us-

ing these estimates. Feldkamp and Puskorius have

been very successful in combining estimation of

weights based on Kalman �ltering [8].

Fig. 1 Graphical representation of the recurrent

network given by equations (1-3)

Appendix A

Here, it is shown in detail how to arrive at equa-
tion (6). The analogous steps are also valid for
(31). Equation (5) can be written as

F xi(t) =
@Tar

@xi(t)
+

X
t0�t

NX
j=1

@+Tar

@netj(t0)

@netj(t
0
)

@xi(t)

= �
t�k(di(t)� xi(t)) +

NX
j=i+1

@+Tar

@netj(t)

@netj(t)

@xi(t)

+

NX
j=m+1

@+Tar

@netj(t+ 1)

@netj(t+ 1)

@xi(t)

+

X
t0>t+1

NX
j=m+1

@+Tar

@netj(t0)

@netj(t
0
)

@xi(t)

While
@netj(t

0)

@xi(t)
� 0;8t0 > t + 1, the last line is

always zero. Further, it follows from equations
(2) and (3) that

@netj(t)

@xi(t)
= wji(t)

@netj(t+ 1)

@xi(t)
= w1

ji(t)

F neti(t) =

@Tar

@neti(t)
+

X
t0�t

NX
j=m+1

@+Tar

@xj(t0)

@xj(t
0
)

@neti(t)

= F xi(t)f
0
(neti(t))

F neti(t+ 1) =

@Tar

@neti(t+ 1)
+

X
t0�t+1

NX
j=m+1

@+Tar

@xj(t0)

@xj(t
0
)

@neti(t+ 1)

= F xi(t+ 1)f 0(neti(t+ 1))

Putting these expressions together then yields

equation (6).

Appendix B

In [6], Williams and Zipser describe many vari-
ants of BPTT , RTRL and also a combination
of them. However, they use constant weights,
wij = wij(t)8t 2 [k; ::; k + h] during the computa-
tion and use the trick to split up the truncation
depth h = h1 + h2 into two intervals. This yields,
using our notation, equation (41), while (43) is
the �rst sum and (44) the second sum of (41),
respectively. Combining these three equations �-
nally yields (45) where in the �rst sum the RTRL
algorithm, started at time k and stopped at time
k + h1 � 1, appears and in the second BPTT (h2)
started at time k + h1.

@+Tar

@wij

=

k+hX
t=k

@+Tar

@wij(t)

@wij(t)

@wij

=

k+hX
t=k

@+Tar

@wij

=

k+h1�1X
t=k

@+Tar

@wij(t)
+

k+hX
t=k+h1

@+Tar

@wij(t)
(41)

k+h1�1X
t=k

@+Tar

@wij(t)
=

k+h1�1X
t=k

NX
l=m+1

@+Tar

@xl(k+h1)

@xl(k+h1)

@wij(t)

=

NX
l=m+1

@+Tar

@xl(k+h1)

k+h1�1X
t=k

@xl(k + h1)

@wij(t)

=

NX
l=m+1

@+Tar

@xl(k+h1)

@xl(k + h1)

@wij

(42)

=

NX
l=m+1

F xl(k+h1)
@xl(k+h1)

@wij

(43)

k+hX
t=k+h1

@+Tar

@wij(t)
=

k+hX
t=k+h1

@+Tar

@neti(t)
xj(t) (44)

@+Tar

@wij

=

NX
l=m+1

@+Tar

@xl(k+h1)

@xl(k+h1)

@wij

+

k+hX
t=k+h1

@+Tar

@neti(t)
xj(t)(45)

References:
[1] S. Haykin. Neural Networks a Comprehensive

Foundation, chapter 15. Prentice Hall, Upper

Saddle River, NJ, 2nd edition, 1998.
[2] Danil V. Prokhorov and Feldkamp L. Primi-

tive adaptive critics. Proceedings of the IEEE

International Conference on Neural Networks

(ICNN) Houston, 78(10):2263{2267, Septem-

ber 1997.
[3] P. Werbos. Beyond regression: New Tools

for Prediction and Analysis in the Behav-

ioral Sciences. Ph.d. dissertation, Harvard

Univ., Cambridge, MA, 1974. Reprinted in

The Roots of Backpropagation: From Ordered

Derivatives to Neural Networks and Political

Forecasting.
[4] P. Werbos. How to use the chain rule for or-

dered derivatives. In David A. White and Don-

ald A. Sofge, editors, Handbook of Intelligent

Control, chapter 10.6. Van Nostrand Reinhold,

New York, 1992.
[5] Stephen W. Pich�e. Steepest descent algo-

rithms for neural network controllers and �l-

ter. IEEE Transactions On Neural Networks,

5(2):198{212, March 1994.
[6] S. Williams and D. Zipser. Gradient-based

learning algorithms for recurrent networks and

their computational complexity. In Chau-

vin and Rumelhart, editors, Backpropagation:

Theory, Architectures and Applications, pages

433{486. LEA, 1995.
[7] P. Werbos. Backpropagation through time:

What it does and how to do it. Proceedings

of the IEEE Control, 78(10):1550{1560, March

1990.
[8] G.V. Puskorious and L.A. Feldkamp. Neuro-

control of nonlinear dynamical systems with

kalman �lter trained recurrent networks. IEEE

Transactions On Neural Networks, 5(2):279{

297, 1994.

