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Abstract: - Due to the developments of complex structures, the computer industry urgently needs a higher-level
design hierarchy. Hardware/software codesign hence becomes a new trend for industrial applications. The paper
presents a new approach to codesign ASIP e�ciently. Firstly, based on a linear algebraic model, we explore the
design space. The model provides a transformation algorithm to combine, separate, evaluate and verify instruc-
tions between software and hardware. Then, the model exploits object-oriented concept to build up its simulation
mechanism. The simulator does executions, statistics and transformations for variant applications. Not only
instruction-level parallelism but also multiprocessing synchronization applications easily apply this model. Finally,
we make an example experiment environment and illustrate the results to show the optimizations.
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1 Introduction

Historically, the evolution of hardware-design entries
shifts gradually: First it was polygons (physical lay-
out), then netlist (gate-level), then HDL code (behav-
ioral synthesis). In the same matter, the developmental
process of software has also been from low-level to high-
level. However, the developments of software not only
seldom regard the impact from hardware architecture
but also often neglect many potential factors, and vice
versa. It is quite clear that performance is strongly
interdependent on hardware and software.

Hardware/software codesign has been a challenge
for industrial applications. No doubt, in the next �ve
to ten years, there will be more research moving the
techniques into industrial use through CAD tool de-
velopment and reaching their full potential [1]. Either
emphasizing on design space exploration or design au-
tomation, they build up partitioning models and ab-
stractions. Collecting all the necessary parameters to
make a best partition is common to all approaches.

The partition problem for ASIP (Application Spe-
ci�c Integrated Processor) codesign becomes more and
more complex. Comparing with the past mature ASIP
codesign like Sato et al. [2] and Huang et al. [3], they
use either top-down or bottom-up instruction-set gen-

erating method. However, both are lack of large bench-
mark's behavior information. Moreover, their simula-
tors are not compiled by mature CAD tools and seem
not accurate enough in hardware cost estimation.

There exist some related work about object-oriented
computer engineering [4] [5]. Our object-oriented sim-
ulation mechanism has some similar structure proper-
ties but totally di�erent behaviors with [5]. In [4], they
propose a tool MOOSE (Model-based Object Oriented
Systems ngineering) to solve application-speci�c prob-
lems like pump and video controls.

Here we create a new linear-space model and an
object-oriented mechanism for e�cient partition. In
this model, the designer writes down only the rela-
tionship rules among the old/new instructions, we can
get the prototyping e�ciently. Through the object-
oriented mechanism, we can do simulations, statistics,
and optimizations for instruction set. Here we provide
a simple method to build up instruction simulator, nei-
ther trace-driven nor general execution-driven. It can
run large benchmarks even SPECint9x and make infor-
mation statistics extracted from collected parameters.
Based on this tested foundation [6], the designers can
explore the whole ASIP space freely and make their
partitioning decision earlier.



2 A New Model

We model ASIP design space as a linear space. In the
linear space, addition and multiplication represent ex-
ecuting and branching of an instruction. Furthermore,
two elemental theorems of basis and replacement ex-
plain respectively why Sato et al. [2] propose basic
operations and why there exist various instruction set-
s.

Next we show an instruction-set linear space (IsV)
over �eld (IsF). We express that the labels and instruc-
tions of a program can be modeled as sequence of num-
bers 2 IsF and vectors 2 ISV respectively.

2.1 Instruction-set �eld

An instruction-set �eld IsF is a sequence of numbers
sn with the following de�nitions of addition and mul-
tiplication:

8si; sj 2 IsF 9 si � sj ; si � sj 2 IsF

Zero : 0 = (si � s�i) = (si 	 si) (1)

One : 1 = (si � si) (2)

where i, j are real numbers and 	 is the inverse of �.
The commutativity, associativity and distributivity [7]
of addition and multiplication are trivial and indi�er-
ent to the real-number subscripts. As for the physical
meaning, the scalars themselves in IsF are meaningless
except for the respective vectors in IsV. Assume with
an instruction vector x, scalar 0 means two inverse vec-
tors (si � x, si � 	x) take zero e�ect. So results in
NOP.

si � x� si � (	x) = (si 	 si) � x

= 0 � x = 0) NOP (3)

Then scalar 1 means one vector x jumps to itself end-
lessly.

2.2 Instruction-set linear space

An instruction-set linear space IsV over a �eld IsF con-
sists of an instruction set on which addition and scalar
multiplication are de�ned so that eight conditions hold
[7]. We show the four major conditions:

x� 0 = x�NOP = x (4)

x� (	x) = (1	 1) � x = 0 (5)

(a � b) � x = a � (b � x) (6)

a � (x� y) = a � x� a � y (7)

The physical meaning of Eqn. (4)(5)(6) is trivial,
and (7) means two di�erent instructions execute at the
same time stamp a in IsF. This is a foundation extend-
ed to represent parallelism as shown in subsection 4.2.

Using this model, the relationship rule (abbreviat-
ed as RR below) is represented as a linear combina-
tion. Not only Huang's new instruction `Compute-
Condition-and-Jump' [3] but also a full program can be
expressed (all present in DLX [8] mnemonics through-
out this paper):

sn � bcnd = sn:1 � sgt� sn:2 � bnez; (8)

where sgt means set-greater-than and bnez means
branch-on-nonequal. Moreover one inverse (e.g. sub)
per instruction (e.g. add), there exists at least one cor-
responding RR for self-veri�cation (e.g. sub = 	add).

Method:
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Figure 1: A modi�ed Warshell's algorithm.

2.3 Instruction combination and trans-

formation

Let's apply the model and show some toy examples.
Firstly, linear combination and transformation are t-
wo basic operations in linear space. In linear space,
we know a vector can be equally expressed as a lin-
ear combination of other vectors. All the same, any
assembly-code program is a larger linear combination
of all instructions. Meanwhile, the � operations rep-
resent the sequence of instruction execution and the �
symbols means label connection for instruction branch-
ing. For example, an absolute-value function abs is
combinations of

abs = s1 � lw:r2;�4(r15) � s2 � sle:r1; r2; r0

�s3 � s8 � bnez:r1; s8 � s4 � nop

�s5 � st:� 8(r15); r2 � s6 � s10 � j:s10

�s7 � nop � s8 � sub:r0; r2; r3

�s9 � sw:� 8(r15); r3 � s10 � nop;

(9)



where s3 and s6 are two branching instructions jump-
ing to s8 and s10, respectively. Secondly, the Warshell's
algorithm's [9] transitive closure is suitable to represen-
t linear transformation via a little modi�cation (refer
to Fig. 1). Through an instruction-set transformation
matrix, any program can be transformed into a new ef-
�cient program achieving the partition goal. Similarly,
performance evaluation is done in this manner.

2.4 E�cient evaluation

The evaluation method exploits linear transformation
property of linear space. This property is usually rep-
resented from a matrix. From technical point of view,
e�cient evaluation is concerned with sparse matrix and
low complexity of matrix multiplication [10]. In fact,
the evaluation needs continuous transformation until
unchanged. This transitive closure concept is formu-
lated as

V �M+ = V+; (10)

where V is in IsV, M is matrix of transformation and
superscript + is transitive closure operation.

For example, given a toy instruction set = f+, -,
<<, *g, the associated frequencies are f6, 5, 1, 3g. If
multiplier can be substituted for an adder and a shifter,
and adder can be replaced from subtracter, then the
transformation result will be
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where t means transposition. If the average power
consumption of instruction set is f1.20�W, 1.45�W,
0.23�W, 16.19�Wg, then the power saving is (6*1.20 -
9*1.45 - 3*0.23 + 3*16.19) = 106.83�W.

3 Object-oriented Mechanism

We propose an easy constructed object-oriented sim-
ulator mechanism based on previous model in C++
programming language. Object-oriented conceptual
encapsulation, inheritance, and polymorphism satis-
fy hardware/software codesign concept. First, object-
oriented's class type constructs instructions into ob-
jects quickly: The inheritance and polymorphism exist

among many instructions. Especially for encapsula-
tion, every instruction contains individual data infor-
mation parameters, hardware characteristics etc. all
encapsulated as well.

3.1 Executions and statistics

The instruction object declared in class type is pro-
totyped as shown in Fig. 2. The object is the ba-
sic element to construct the simulator. In Fig. 2,
the constructor OP ADD(oat, oat, oat) initializes
the parameter information inputted from outside for
evaluation purpose. These hardware parameters come
from either CAD tools [11] or experienced formula [12].
Then by replace ag, add-procedure makes a substitu-
tion decision. These declarations are all in public area
for the purpose of execution control.

Actually, we execute the simulation easily by linking
all instruction objects sequentially. Then the switch-
case statement in Fig. 2 represents relationship rules
among instructions.

} Add;

power = p; delay = d; area = a   };
OP_ADD( float

case
case

switch
add(int

2:
1:

return
return

default: return 

p, float d, float a)   {

Sub.sub(a,-b);
. . .

a + b; };   }

(replace_flag)   {
int a, int b)   { count++;

static int count;
float power, delay, area;
int replace_flag;

OP_ADD {class

Figure 2: Instruction object.

Before a program execution, we must declare a link
list data structure *p[] for it. Every element in the
list represent an instruction simulation action. Any
assembly program can be translated into this linking
list easily, for example, p[0] = &Add; p[1] = &Mul and
so on. Finally, through C++'s type conversion, we
convert the void-type pointer into the corresponding
class type such as the last three lines in Fig. 3.

Now, we are able to run some short assembly pro-
grams. Unfortunately, large benchmarks like SPECin-
t9x are di�cult to deal with except omit these system-
function calls. In the contrast, we can execute these
system-function calls directly in C++. That is just
restoring the corresponding assembly codes into origi-
nal C++ codes to get the execution result e�ciently.



3.2 Optimizations

Optimization is goal of partition in codesign. And
transformation is the proposed method for optimiza-
tion. There are three general ways to decide how
to partition [4]. They are integrated in our simple
methodology and with regard to our statistics, linear
transformation, and RRs strategies respectively:

� Performance experiments on prototype system [13].

� The analysis of system cost factors and the optimiza-
tion of these through mathematical techniques [14].

� The analysis of system cost factors and the optimiza-
tion of these through guided user selection [15].

r3 = ((OP_XOR *)p[2]->xor(r2,r2);
r2 = ((OP_MUL *)p[1]->mul(r1,8);
r1 = ((OP_ADD *)p[0]->add(9,7);

void *p[PROGRAM_LINES];

main {

Add Mul

210

p[0] = &Add; p[1] = &Mul; p[2] = &Xor ...

Xor

p

. . .
}

Figure 3: Instruction execution and statistics.

From implementation viewpoint, optimization is
achieved by e�cient transformation procedure and is
concerned with sparse matrix and low complexity of
matrix multiplication. The complexity is O(product
of row number and sum of two sparse matrix's element
numbers) [10] which is far more simple than the gener-
al O(cube of row number). The abstract data type of
sparse matrix such as matrix's create, transpose, mul-
tiply are described in [10] circumstantially.

From evaluation viewpoint, we guide user to build
up their RRs by class as shown in Fig. 2. Then re-
place ag will enable instruction transformation to op-
timize the hardware/software partition.

4 Applications

Modern processors focus on speci�c applications. Here
we mention two examples about multimedia and
semaphores for instruction-level parallelism and mul-
tiprocessing synchronization applications respectively.

4.1 Instruction-level parallelism

So far not a real application discussed, in fac-
t application-speci�c multimedia instructions have a
novel demonstration. As in [16], there are seven new
instructions and seven multimedia characters are in-
duced. According to these characters, a multimedi-
a program can use the VLIW (Very Long Instruction
Word) concept to extend its parallel execution. For
example, a typical graphic algorithm Bresenham line-
drawing program determines pixel positions using on-
ly integer arithmetic and suits to execute in subword
packed data types (refer to Fig. 4).

   

   while (x < x_end)
   {
      x++;

      else           {   y++;   p += c2;   }
      SET_PIXEL (x, y);
   }

      if (p < 0)   {   p += c1;   }

   SET_PIXEL (x, y);
      x = x1; y = y1; x_end = x2;   }
   else   {
      x = x2; y = y2; x_end = x1;   }
   if (x1 > x2)   {

   c2 = 2 * (dy -dx);
   p = 2 * dy - dx;
   c1 = 2 * dy;

   dx = abs(x1-x2);    dy = abs(y1-y2);

   int dx, dy, x, y, x_end, p, c1, c2;
int x1, y1, x2, y2;

Bresenham_line

}

{Critical
Region }

(x1, y1, x2, y2)   {

+ + +

= == =

      x

      1

      x+1

      x++;       y++;       p+=c2

      y+1       p+c2

      y

      1

      p

      c2

     reg1:

     reg2:

     regR:

(|x2 - x1|-|y2 - y1|):|y2 - y1|

Figure 4: Line-drawing algorithm.

The seven multimedia characters such as small na-
tive data types, large data set sizes, large amounts of
inherent data parallelism, highly predictable branches
etc. [16] can be replacement conditions of RRs. These
new rules bene�t the critical section in Bres line(x1,
y1, x2, y2) program about 0.1% speedup.

The principle is the if-else branch blocks can be
predicted exactly as (jx2-x1j-jy2-y1j) : jy2-y1j and the
adjacent additions in the block can be combined to
single subword execution to save cycle time as shown
in (12). The optimization can be probability-oriented
even the x++ instruction may be pulled into the branch
block and forced to combine with another instruction



(refer to Fig. 4).

sn � sub add = sn:1 � add� sn:2 � add (12)

sn � lhi� sn+1 � addui = sn:1 � new lhi; (13)

where lhi means load-high-immediate and sub add
means subword-addition.

By the way, it takes 1.25% of the total cycles on av-
erage for a special instruction `Load-High-Bits' in mul-
timedia programs. It used to transfer a full word data
like `label' and appears with `Load-Low-Bits' instruc-
tion just because the movement cannot be done once.
Technically speaking, by reserving the leftmost of in-
struction and giving one bit to the addressing space we
can transfer a full word at a time as shown in (13).

int cpid;

main ()   {

Binary P:

sig(s1);
sig(s3);
else
if
C--;
wait(s3); wait(s1);

if
S--;

S<0 { add to List;

C<0 { sig(s1); sig(s2) }

block;   }

S++;
S<=0 { del from List;if

wait(s1);
C++;
ifC<=0 sig(s2);
sig(s1);

wakeup(P);   }
Binary V:

Semid = SemInit(SEMKEY);   cpid = fork();

General P: wait(S) General V: sig(S)

class OP_ADD shared;

}

-1: cout << "fork() error!\n";
P(Semid);  cout << shared++;  V(Semid);   };

case 0: for
switch (cpid)   {
Shmid = ShmInit(SHMKEY, sizeof(shared));

P(Semid);  cout << shared++;  V(Semid);   };

case
default: for

( ; ; )  {   // child process

( ; ; )  {   // parent process

Figure 5: Two-process synchronization.

As above, we explore the instruction space e�cient-
ly and get he performance increase totally up to 1.35%
with RR after Chen's PO (Peephole Optimization)
techniques [6]. This application is di�erent from [2] [3]
in not extracting characters from narrow benchmarks
but widely gathering new multimedia information to
codesign.

4.2 Multiprocessing synchronization

There exist a kind of parallel execution mechanism
called cooperating process [17]. It can be represent-
ed as a � x � a � y: At the time stamp a, two in-
structions are executing. If they concurrently access to
the shared data, they may result in data inconsisten-
cy. Thus, semaphore mechanism appears to solve this
problem involved in multiprocessing environment.

Semaphores are implemented at least in two form-
s, general and binary [17], but all satis�ed P (wait)/V
(signal) pair protocol. The general form is just mi-
nus/plus operations yet su�ers from busy waiting. The
binary semaphores are designed to solve this disadvan-
tage but cost more variables and calculations. How
to tradeo� them is an issue. The issue contains `How
about making semaphores as hardware not software?'
(e.g. SPARC's ldstub[18]), `The time proportion be-
tween semaphore and critical section?' and so on.

Our mechanism can easily model a simple two-
process synchronization as shown in Fig. 5. The child-
process identi�er equals zero and the parent equals pos-
itive number. P and V can be described in class like
Fig. 2 and be substituted for many user-de�ned RRs.

5 Experimential Result

5.1 Example design environment

We construct an extended environment as shown in
Fig. 6 for industrial codesign. This environment in-
tegrates four tools (compiler, simulator, synthesizer,
expert system) to complete instruction transformation
(1.ISA in Fig. 6), hardware-parameter evaluation (2.P-
DA in Fig. 6) and RRs design (guided user selection).

In fact, the previous model and mechanism are e-
nough to make prototyping. However, we involve some
mature tools like the expert system to assist users de-
scribing their RR rules. Then expert system output-
s IDO (Instruction Description Objects) �le for opti-
mization.

expert system
KES*GNU*

meta-assembler

cross compiler

ASM

RTL

Cadence*
auto-synthesizer system tools

Synopsys*

User

IDO operations

BNF

MEM

IDO

IDO abstractions

code generator

insn. simulator

H/S

H/S

ISA

PDA

RTL:Register Transfer Level program BNF:
MEM:ASM:

BIN:
IDO:
ISA:
PDA:

H/S:

Assembly language program
Binary codes program

Instruction Set Architecture
Power/Delay/Area information

Hardware/Software

Memory monitor
Backus Normal Form

cosynthesis

Output flow Information flow

Instruction Description Objects

C/C++

BIN

Verilog

1 2

2

1

Figure 6: Example experiment of instruction object
model.



5.2 Multimedia benchmarks

The result shows that Newton and Ackermann is great
optimized by PO (Peephole Optimization) option. As
for RR option, Newton and Bresenham line bene�t
much. The main RR types we exploit are subword exe-
cution: e.g. Eqn. (12) and improved `Load-High-Bits':
e.g. Eqn. (13).

Table 1 and Fig. 7 indicate the cycle times of exe-
cuted instructions and the speedups. The speedup is
calculated based on the execution cycles of the cosyn-
thesis software (benchmarks) and hardware architec-
ture (ASIP) on CAD tool, SYNOPSYS.

Table 1: Cycle times of executed instructions.

Program Original with PO PO+RR

Hu�man [19] 314794 302410 296890

Newton [20] 56154 20127 17256

Ackermann 68338 32934 32357

Bresenham line [21] 82179 79812 78317

Bresenham circle 361318 356866 352532

PO: Peephole Optimization; RR: Replacement Rules

2.79 3.25

2.08 2.11

1.04 ; 1.06

1.03 ; 1.05

1.01 ; 1.03

Original

Bresenham_circle

Bresenham_line

Newton

Huffman

Ackermann

Speedup1 4

Program

: with PO

: with PO+RR

Figure 7: Speedup diagram for Table 1.

6 Conclusions

We propose a new model to integrate ASIP codesign.
It is an induction endpoint for past and a deduction
start to ASIP development whatever intra- or inter-
operation parallelism. Then we modify Warshell algo-
rithm to deal with linear transformation. Based on the

fast algorithm, we can either explore design space or
automate design e�ciently.

Furthermore, we plan a simple but e�cient object-
oriented simulation mechanism to implement the pro-
posed model. Its abstract data type models the code-
sign issues easily and quickly, either for instruction-
level parallelism or multiprocessing synchronization ap-
plication. Finally, this model can extend to a larger
CAD cosynthesis environment. According to the same
methodology, the ow going from software downto the
embedded hardware iterates and anneals to an optimal
product.
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