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Abstract: - Due to the developments of complex structures, the computer industry urgently needs a higher-level
design hierarchy. Hardware/software codesign hence becomes a new trend for industrial applications. The paper
presents a new approach to codesign ASIP efficiently. Firstly, based on a linear algebraic model, we explore the
design space. The model provides a transformation algorithm to combine, separate, evaluate and verify instruc-
tions between software and hardware. Then, the model exploits object-oriented concept to build up its simulation
mechanism. The simulator does executions, statistics and transformations for variant applications. Not only
instruction-level parallelism but also multiprocessing synchronization applications easily apply this model. Finally,
we make an example experiment environment and illustrate the results to show the optimizations.
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1 Introduction

Historically, the evolution of hardware-design entries
shifts gradually: First it was polygons (physical lay-
out), then netlist (gate-level), then HDL code (behav-
ioral synthesis). In the same matter, the developmental
process of software has also been from low-level to high-
level. However, the developments of software not only
seldom regard the impact from hardware architecture
but also often neglect many potential factors, and vice
versa. It is quite clear that performance is strongly
interdependent on hardware and software.

Hardware/software codesign has been a challenge
for industrial applications. No doubt, in the next five
to ten years, there will be more research moving the
techniques into industrial use through CAD tool de-
velopment and reaching their full potential [1]. Either
emphasizing on design space exploration or design au-
tomation, they build up partitioning models and ab-
stractions. Collecting all the necessary parameters to
make a best partition is common to all approaches.

The partition problem for ASIP (Application Spe-
cific Integrated Processor) codesign becomes more and
more complex. Comparing with the past mature ASIP
codesign like Sato et al. [2] and Huang et al. [3], they
use either top-down or bottom-up instruction-set gen-

erating method. However, both are lack of large bench-
mark’s behavior information. Moreover, their simula-
tors are not compiled by mature CAD tools and seem
not accurate enough in hardware cost estimation.

There exist some related work about object-oriented
computer engineering [4] [5]. Our object-oriented sim-
ulation mechanism has some similar structure proper-
ties but totally different behaviors with [5]. In [4], they
propose a tool MOOSE (Model-based Object Oriented
Systems ngineering) to solve application-specific prob-
lems like pump and video controls.

Here we create a new linear-space model and an
object-oriented mechanism for efficient partition. In
this model, the designer writes down only the rela-
tionship rules among the old/new instructions, we can
get the prototyping efficiently. Through the object-
oriented mechanism, we can do simulations, statistics,
and optimizations for instruction set. Here we provide
a simple method to build up instruction simulator, nei-
ther trace-driven nor general execution-driven. It can
run large benchmarks even SPECint9x and make infor-
mation statistics extracted from collected parameters.
Based on this tested foundation [6], the designers can
explore the whole ASIP space freely and make their
partitioning decision earlier.



2 A New Model

We model ASIP design space as a linear space. In the
linear space, addition and multiplication represent, ex-
ecuting and branching of an instruction. Furthermore,
two elemental theorems of basis and replacement ex-
plain respectively why Sato et al. [2] propose basic
operations and why there exist various instruction set-
S.

Next we show an instruction-set linear space (IsV)
over field (IsF). We express that the labels and instruc-
tions of a program can be modeled as sequence of num-
bers € IsF and vectors € ISV respectively.

2.1 Instruction-set field

An instruction-set field IsF is a sequence of numbers

sp with the following definitions of addition and mul-
tiplication:

Vs, S5 € IsF 1

Zero:0 =

One:1 =

S;®sj,8;08;5 € IsF
(si®s-i)=(siosi) (1)
(si08;) (2)

where i, j are real numbers and & is the inverse of &®.
The commutativity, associativity and distributivity [7]
of addition and multiplication are trivial and indiffer-
ent to the real-number subscripts. As for the physical
meaning, the scalars themselves in IsF are meaningless
except for the respective vectors in IsV. Assume with
an instruction vector x, scalar 0 means two inverse vec-
tors (s; o x, 8; o ©x) take zero effect. So results in
NOP.

s;0xPs;0(0x) = (5;08;)0x
—0ox = 0= NOP 3)

Then scalar 1 means one vector x jumps to itself end-
lessly.

2.2 Instruction-set linear space

An instruction-set linear space IsV over a field IsF con-
sists of an instruction set on which addition and scalar
multiplication are defined so that eight conditions hold
[7]. We show the four major conditions:

x®0 = xdNOP=x (4)
x®(©Ex) = (1ol)ox=0 (5)
(aob)ox = ao(box) (6)

ao(x®y) = aoxdaoy (7)

The physical meaning of Eqn. (4)(5)(6) is trivial,
and (7) means two different instructions execute at the
same time stamp o in IsF. This is a foundation extend-
ed to represent parallelism as shown in subsection 4.2.

Using this model, the relationship rule (abbreviat-
ed as RR below) is represented as a linear combina-
tion. Not only Huang’s new instruction ‘Compute-
Condition-and-Jump’ [3] but also a full program can be
expressed (all present in DLX [8] mnemonics through-
out this paper):

spobend = 5,1 0 sgt & s,.0 0 bnez, (8)

where sgt means set-greater-than and bnez means
branch-on-nonequal. Moreover one inverse (e.g. sub)
per instruction (e.g. add), there exists at least one cor-
responding RR for self-verification (e.g. sub = ©add).

Input: Alinear operator matrix W = M
Output: A closure matrix W, = M*

Method:
1. First transfer to Wy all nonzero W)_1 (i, i).

2. Put [ nonzero Wy._1 (i, j), i '=j]* [ the above
W1 G, J) 1in all the position W (i, ).

3. PUtW (i, ]) + r%[nonzero W 1(, m), i 1= m]
* [nonzero Wy_q (m, j), m !=j]in all the
position Wy (i, ).

4. Repeat step 1, 2, 3 until W= W\ 4.

Figure 1: A modified Warshell’s algorithm.

2.3 Instruction combination and trans-
formation

Let’s apply the model and show some toy examples.
Firstly, linear combination and transformation are t-
wo basic operations in linear space. In linear space,
we know a vector can be equally expressed as a lin-
ear combination of other vectors. All the same, any
assembly-code program is a larger linear combination
of all instructions. Meanwhile, the @& operations rep-
resent the sequence of instruction execution and the o
symbols means label connection for instruction branch-
ing. For example, an absolute-value function abs is
combinations of

abs = 51 o lw.r2, —4(r15)
Ps3 o sg o bnez.rl, sg
®ss5 o st. — 8(rl5),r2

®s7 o nop

®sg o sw. — 8(r15),r3

sy oslerl; r2, 70
S4 0 NOP
S6 © 510 ©J.510

sg o sub.r0,r2,r3

© D D D D

S10 © NOp,

(9)



where s3 and sg are two branching instructions jump-
ing to sg and s19, respectively. Secondly, the Warshell’s
algorithm’s [9] transitive closure is suitable to represen-
t linear transformation via a little modification (refer
to Fig. 1). Through an instruction-set transformation
matrix, any program can be transformed into a new ef-
ficient program achieving the partition goal. Similarly,
performance evaluation is done in this manner.

2.4 Efficient evaluation

The evaluation method exploits linear transformation
property of linear space. This property is usually rep-
resented from a matrix. From technical point of view,
efficient evaluation is concerned with sparse matrix and
low complexity of matrix multiplication [10]. In fact,
the evaluation needs continuous transformation until
unchanged. This transitive closure concept is formu-
lated as

VoMt =VT, (10)

where V is in IsV, M is matrix of transformation and
superscript + is transitive closure operation.

For example, given a toy instruction set = {+, -,
<<, *}, the associated frequencies are {6, 5, 1, 3}. If
multiplier can be substituted for an adder and a shifter,
and adder can be replaced from subtracter, then the
transformation result will be

61" [o 10 07"

50 10100 B

1 0010 =

3] lto10],,

61" [0 10 0] 01"
50 10100 |14
1 0010 = 4
3] o1 1o0],, 0]

(11)

where ¢t means transposition. If the average power
consumption of instruction set is {1.20uW, 1.45uW,
0.23uW, 16.19uW}, then the power saving is (6*1.20 -
9*1.45 - 3%0.23 + 3*16.19) = 106.83uW.

3 Object-oriented Mechanism

We propose an easy constructed object-oriented sim-
ulator mechanism based on previous model in C++
programming language. Object-oriented conceptual
encapsulation, inheritance, and polymorphism satis-
fy hardware/software codesign concept. First, object-
oriented’s class type constructs instructions into ob-
jects quickly: The inheritance and polymorphism exist

among many instructions. Especially for encapsula-
tion, every instruction contains individual data infor-
mation parameters, hardware characteristics etc. all
encapsulated as well.

3.1 Executions and statistics

The instruction object declared in class type is pro-
totyped as shown in Fig. 2. The object is the ba-
sic element to construct the simulator. In Fig. 2,
the constructor OP_-ADD/(float, float, float) initializes
the parameter information inputted from outside for
evaluation purpose. These hardware parameters come
from either CAD tools [11] or experienced formula [12].
Then by replace_flag, add-procedure makes a substitu-
tion decision. These declarations are all in public area
for the purpose of execution control.

Actually, we execute the simulation easily by linking
all instruction objects sequentially. Then the switch-
case statement in Fig. 2 represents relationship rules
among instructions.

class OP_ADD {

int replace_flag;
float power, delay, area;
static int count;

int add( int a, intb) { count++;
switch (replace_flag) {
case 1: return Sub.sub(a,-b);
case 2: return

default: return a+b;}; }

OP_ADD(float p, float d, float a) {
power = p; delay =d; area=a };

} Add;
Figure 2: Instruction object.

Before a program execution, we must, declare a link
list data structure *p[] for it. Every element in the
list represent an instruction simulation action. Any
assembly program can be translated into this linking
list easily, for example, p[0] = &Add; p[1] = &Mul and
so on. Finally, through C++’s type conversion, we
convert the void-type pointer into the corresponding
class type such as the last three lines in Fig. 3.

Now, we are able to run some short assembly pro-
grams. Unfortunately, large benchmarks like SPECin-
t9x are diffcult to deal with except omit these system-
function calls. In the contrast, we can execute these
system-function calls directly in C++. That is just
restoring the corresponding assembly codes into origi-
nal C++ codes to get the execution result efficiently.



3.2 Optimizations

Optimization is goal of partition in codesign. And
transformation is the proposed method for optimiza-
tion. There are three general ways to decide how
to partition [4]. They are integrated in our simple
methodology and with regard to our statistics, linear
transformation, and RRs strategies respectively:

e Performance experiments on prototype system [13].

e The analysis of system cost factors and the optimiza-
tion of these through mathematical techniques [14].

e The analysis of system cost factors and the optimiza-
tion of these through guided user selection [15].

main {

void *p[PROGRAM_LINES];
p[0] = &Add; p[1] = &Mul; p[2] = &Xor ...

rl = ((OP_ADD *)p[0]->add(9,7);
r2 = ((OP_MUL *)p[1]->mul(r1,8);
r3 = ((OP_XOR *)p[2]->xo0r(r2,r2);

}

Figure 3: Instruction execution and statistics.

From implementation viewpoint, optimization is
achieved by efficient transformation procedure and is
concerned with sparse matrix and low complexity of
matrix multiplication. The complexity is O(product
of row number and sum of two sparse matrix’s element
numbers) [10] which is far more simple than the gener-
al O(cube of row number). The abstract data type of
sparse matrix such as matrix’s create, transpose, mul-
tiply are described in [10] circumstantially.

From evaluation viewpoint, we guide user to build
up their RRs by class as shown in Fig. 2. Then re-
place_flag will enable instruction transformation to op-
timize the hardware/software partition.

4 Applications

Modern processors focus on specific applications. Here
we mention two examples about multimedia and
semaphores for instruction-level parallelism and mul-
tiprocessing synchronization applications respectively.

4.1 Instruction-level parallelism

So far not a real application discussed, in fac-
t application-specific multimedia instructions have a
novel demonstration. As in [16], there are seven new
instructions and seven multimedia characters are in-
duced. According to these characters, a multimedi-
a program can use the VLIW (Very Long Instruction
Word) concept to extend its parallel execution. For
example, a typical graphic algorithm Bresenham line-
drawing program determines pixel positions using on-
ly integer arithmetic and suits to execute in subword
packed data types (refer to Fig. 4).

X++; y++; p+=c2
regl: ‘ X ‘ y ‘ p ‘
+ + +
reg2: \ 1 \ \ c2 \
regR:[  x+1 | y+x1 | p+c2 |

Bresenham_line (x1,y1, x2,y2) {
int x1, y1, x2, y2;
int dx, dy, x, y, x_end, p, c1, c2;

dx = abs(x1-x2); dy = abs(y1-y2);

p=2*dy-dx;

cl=2*dy; €2 =2 * (dy -dx);

if (x1>x2) {
X=X2;y=y2;x_end=x1; }

else {

x=x1;y=yl; x_end =x2; }
SET_PIXEL (X, y);

while (x < x_end)

{
X++;
Critic if(p<0) { p+=c1; }
Regi else { y++ p+=c2 J}
SET_PIXEL (X, y);
}}

(Ix2 - x1-ly2 - y1|):ly2 - y1

Figure 4: Line-drawing algorithm.

The seven multimedia characters such as small na-
tive data types, large data set sizes, large amounts of
inherent data parallelism, highly predictable branches
etc. [16] can be replacement conditions of RRs. These
new rules benefit the critical section in Bres_line(x1,
y1, x2, y2) program about 0.1% speedup.

The principle is the if-else branch blocks can be
predicted exactly as (|x2-x1|-|y2-y1]) : |y2-y1| and the
adjacent additions in the block can be combined to
single subword execution to save cycle time as shown
n (12). The optimization can be probability-oriented
even the z++ instruction may be pulled into the branch
block and forced to combine with another instruction



(vefer to Fig. 4).

s, 0 sub_add = s, 1 oadd @ s,,» o add (12)
Sp o lhi® s, 41 o addui = 5,1 o new_lhi, (13)

where lhi means load-high-immediate and sub_add
means subword-addition.

By the way, it takes 1.25% of the total cycles on av-
erage for a special instruction ‘Load-High-Bits’ in mul-
timedia programs. It used to transfer a full word data
like ‘label’ and appears with ‘Load-Low-Bits’ instruc-
tion just because the movement cannot be done once.
Technically speaking, by reserving the leftmost of in-
struction and giving one bit to the addressing space we
can transfer a full word at a time as shown in (13).

General P: wait(S) General V: sig(S)

S--; S++;
if S<0 { add to List; if S<=0 { del from List;
block; } wakeup(P); }
Binary P: Binary V:
wait(s3); wait(sl); wait(s1);
C- C++;

if é<0 {'sig(s1); sig(s2) } ifC<=0 sig(s2);

else sig(sl); sig(sl);
sig(s3);

main () {
int cpid; class OP_ADD shared,;

Semid = SemInit(SEMKEY); cpid = fork();
Shmid = Shminit(SHMKEY, sizeof(shared));
switch (cpid) {

case 0: for (;;) { /I child process

P(Semid); cout << shared++; V(Semid); };
case -1: cout << "fork() error\n";

default: for (;;) { // parent process
P(Semid); cout << shared++; V(Semid); };

Figure 5: Two-process synchronization.

As above, we explore the instruction space efficient-
ly and get he performance increase totally up to 1.35%
with RR after Chen’s PO (Peephole Optimization)
techniques [6]. This application is different from [2] [3]
in not extracting characters from narrow benchmarks
but widely gathering new multimedia information to
codesign.

4.2 Multiprocessing synchronization

There exist a kind of parallel execution mechanism
called cooperating process [17]. It can be represent-
ed as a ox ® a oy: At the time stamp a, two in-
structions are executing. If they concurrently access to
the shared data, they may result in data inconsisten-
cy. Thus, semaphore mechanism appears to solve this
problem involved in multiprocessing environment.

Semaphores are implemented at least in two form-
s, general and binary [17], but all satisfied P (wait)/V
(signal) pair protocol. The general form is just mi-
nus/plus operations yet suffers from busy waiting. The
binary semaphores are designed to solve this disadvan-
tage but cost more variables and calculations. How
to tradeoff them is an issue. The issue contains ‘How
about making semaphores as hardware not software?’
(e.g. SPARC’s ldstub[18]), ‘The time proportion be-
tween semaphore and critical section?’ and so on.

Our mechanism can easily model a simple two-
process synchronization as shown in Fig. 5. The child-
process identifier equals zero and the parent equals pos-
itive number. P and V can be described in class like
Fig. 2 and be substituted for many user-defined RRs.

5 Experimential Result

5.1 Example design environment

We construct an extended environment as shown in
Fig. 6 for industrial codesign. This environment in-
tegrates four tools (compiler, simulator, synthesizer,
expert system) to complete instruction transformation
(1.ISA in Fig. 6), hardware-parameter evaluation (2.P-
DA in Fig. 6) and RRs design (guided user selection).

In fact, the previous model and mechanism are e-
nough to make prototyping. However, we involve some
mature tools like the expert system to assist users de-
scribing their RR rules. Then expert system output-
s IDO (Instruction Description Objects) file for opti-
mization.

ISA

code generator F\* - { IDO operations ‘
¥ ASM AN
: ‘ meta-assembler ‘\ \{

IDO abstractions‘
T

. |

@fﬁ@ B ey

Verilog MEM--2.y
Cadence* Synorﬁs S*
auto-synthesizer system tools

Output flow - - - - Information flow
RTL:Register Transfer Level program BNF: Backus Normal Form
ASM: Assembly language program MEM: Memory monitor
BIN: Binary codes program

IDO: Instruction Description Objects
ISA: Instruction Set Architecture
PDA: Power/Delay/Area information

H/S: Hardware/Software
cosynthesis

Figure 6: Example experiment of instruction object
model.



5.2 Multimedia benchmarks

The result shows that Newton and Ackermann is great
optimized by PO (Peephole Optimization) option. As
for RR option, Newton and Bresenham _line benefit
much. The main RR types we exploit are subword exe-
cution: e.g. Eqn. (12) and improved ‘Load-High-Bits’:
e.g. Eqn. (13).

Table 1 and Fig. 7 indicate the cycle times of exe-
cuted instructions and the speedups. The speedup is
calculated based on the execution cycles of the cosyn-
thesis software (benchmarks) and hardware architec-
ture (ASIP) on CAD tool, SYNOPSYS.

Table 1: Cycle times of executed instructions.

|| Program | Original | with PO | PO+RR ||
Huffman [19] 314794 302410 296890
Newton [20] 56154 20127 17256
Ackermann 68338 32934 32357
Bresenham line [21] 82179 79812 78317
Bresenham circle 361318 356866 352532

PO: Peephole Optimization; RR: Replacement Rules

Program

Huffman || 1.04; 1.06

Newton 2.79 325

Ackermann 208 | 211

Bresenham line || ; 53. 105

Bresenham circle| 1 ;. 103

\ \
Speedup 4

I:] : with PO+RR
D : with PO

Figure 7: Speedup diagram for Table 1.

1
Original

6 Conclusions

We propose a new model to integrate ASIP codesign.
It is an induction endpoint for past and a deduction
start to ASIP development whatever intra- or inter-
operation parallelism. Then we modify Warshell algo-
rithm to deal with linear transformation. Based on the

fast algorithm, we can either explore design space or
automate design efficiently.

Furthermore, we plan a simple but efficient object-
oriented simulation mechanism to implement the pro-
posed model. Its abstract data type models the code-
sign issues easily and quickly, either for instruction-
level parallelism or multiprocessing synchronization ap-
plication. Finally, this model can extend to a larger
CAD cosynthesis environment. According to the same
methodology, the flow going from software downto the
embedded hardware iterates and anneals to an optimal
product.
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