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1   Introduction
This work concerns the recognition of music score
sheets (either printed or hand-written) and its
application to the oriental music. Note that the
proposed method is also efficient for occidental
music even if, up to now, only monophonic scores
have been considered in the implementation.
The oriental music is characterized by the use of
sounds which have neither fixed heights nor
intervals (since the mode can be changed within the
course of a same piece of music), contrarily to the
occidental music. Oriental music is transcribed in
the same way than the western one, except that in
order to transcribe some degrees, lowered or raised
of a subdivision of tone, signs specific to each action
have to be used (for instance, half -flat or half-sharp
for a quarter of tone). The purpose of our work is to
design a software allowing some occidental
musicologists having access to this music, li stening
and analyzing them in an automated way (this
means, without having to learn the skill of their
performance nor to hand-seize them by mean of an
edition software). Furthermore, since this music is
often edited in a handwritten way, this work will
also lead to a better edition of these documents.
Our recognition system relies on an original process
of image analysis, based on the association of three
techniques:
- the segmentation,
- the recognition by neural networks,
- and the analysis by use of context.
The hierarchy of use of these techniques results
from the assimilation of the way human proceeds to

music scoring. Two levels of extraction are to be
distinguished:
- The first concerns the separation of the bottom
layer and of the music scoring layer: the bottom
layer is exclusively constituted by the music stave,
as in previous such works [1,2,3].
- The music scoring layer constitutes the second
level: the scores (notes, groups of notes), comments
(title, …) and signs (flats, sharps, bars,
"crescendi"…) that are added on the bottom layer. It
can be separated (as in [4]) into two types of
entities: symbols and constructs. The symbols are
entities one cannot disconnect (as flat, sharp,
numbers or keys); the constructs are connected
entities formed by a group of symbols or of basic
entities (as segments or heads of crotchets).
The efficiency of the music document recognition is
proportional to the capacity of separating the
different layers, of recognizing symbols, of
segmenting constructs, and finally of reconstructing
by use of the high level knowledge of music
notation. Thus, we suggest the following
architecture to build our application:
1/ recognition and removal of the bottom layer;
2/ Recognition of the constructs from basic entities;
3/ recognition and classification of the remained
entities (symbols);
4/ reconstruction of the musical score.
These four items correspond to the plan of the
present paper.



2   Recognition and removal of the
bottom layer

Fig. 1 - Image of a segment

Fig. 2 - Image of group of notes

The action consists in extracting the stave from the
image [1,2,3,5]. Long and parallel segments form
the stave. So to extract the stave, our computation
starts with the recognition of all the segments in the
sheet: to remove them we use their characteristics.
For this action, we use Kalman-Bucy filtering [6].
Such filter is known to perform a good segment
detection and is greatly robust in presence of noise
[1,2].
Our Kalman-Bucy filter notations are being
introduced. The filter acts by following, step by step
(indexed by k), a state kx and a measurement kz .

These variables are related by:

kwkxkHkz +=

kw  is the noise on state: white noise of null average

and of known variance Rk . kH  is the measurement

matrix supposed known. The evolution of the state
is:

kkkkk vuxFx ++=+1

kv  the noise on measurement: white noise of null

average and of known variance kQ . Matrix kF  is

supposed known.

The best prediction of the noise kv  is null, so the

best prediction kkx /1ˆ +  of the state 1+kx  is:

kukxkFkkx +=+ /1ˆ

The variance of the error prediction at the step k is
equal to the noise variance:
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From an estimation kkx /ˆ , at step k, but without

measurement, the best prediction for state at step
k+1 is:

kukkxkFkkx +=+ /ˆ/1ˆ .

Then, the variance of prediction error kkP /1+  is:
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This variance depends on the accuracy of the
estimation before kkP /  and on the noise

magnitude kQ . Without noise on the

measurement )0( =kw , the optimal prediction is:

kkxkHkkz /1ˆ1/1ˆ ++=+ .

After the measurement of 1+kz  at the step 1+k ,

the gap between the measurement 1+kz  and

prediction 1ˆ +kz  provides an indication on the

estimation error. This error must intervene in the
next predictions. In this way, we have to bring a
correction to the predicted state 

1/1
ˆ

++ kk
x , which

must be proportional to the gap 1+kz - kkz /1ˆ + :

)/1ˆ1(1/1ˆ1/1ˆ kkzkzkGkkxkkx +−++++=++
,

1+kG  depending on the noise variances.

Therefore, we have the following Kalman-Bucy
filter equations:
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Now, this filter is being applied to segment
extraction.

Our application sweeps the first column of the
image from top to bottom, then goes to the next
columns (left to right): when it finds a black pixel, it
makes the hypothesis of a possible starting segment
and begins its recognition. The action aborts when
the information extracted in the final iteration does
not agree with hypothesis emitted in the last one.
The variables used by the filter are now to be
defined (see Fig. 1). The integer k denotes column
indices. S is the thickness of the span in the segment,
Y the position of the middle pixel of the span and

Y� its derivative (speed) defined as 1−−= kkk YYY� .
In fact, the tracking of the segment is made by
identifying the evolution ( YY �, ) of the trajectory and
thickness S of the span. vk represents the
disturbances on the state, this means, due to some
mismatch in the writing or scanning of the score.
Further, wk will denote the measurement
perturbations (supposed to be a white noise). This
leads to the following state model:

kvkxkFkx +=+1  with
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The filter can be separated into two disconnected
subsystems corresponding to the position

vector T
kYkY ),( � and the span thickness S. This

decomposition decreases the complexity of
calculation without tampering the results.

- First subsystem: position vector
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development has been proceeded, considering the
acceleration Y�� of Y:
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- Second subsystem: span thickness

S, with matrix F2=1 and the state noise V3. The noise
variance QE,k is normally constant, too.

The following measurement systems arise, with Wi

(i= 1,2) the measurement noises:

- Position measurement: 1,1 WkYkz +=  with
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,1 kH  and the variance RY fixed.

- Thickness measurement: 2,2 WkSkz +=

with 1,2 =kH  and the variance RS fixed.

Here we shall take W1 = W2, a same white noise of
null average and of known variance Rk. Hk is the
matrix binding the state to the measurement, it is
supposed to be known. Prediction needs to compute
the matrices of error covariance 

kkY
P

/,ˆ
(for the

position) and 
kkS

P
/1,ˆ +  (for the span thickness).

If Yσ denotes the root mean-square (deviation)
between state and prediction, then
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The coefficient 1., +kG  balancing the measurement

and prediction is :
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The initial substates and the filtering rules are now
to be fixed. For all new span, after measurement, the
following hypotheses (H) and criterion (C) are
chosen:

(H) Let Y0 the span middle; 00 =Y�  for the tracking of

horizontal tendency segments, 0,YP  and 0,SP  are set

to the thickness S0 of the span, in order to have a
large adaptability for the slope determination. The
variance of noise measurement R is set to 2 pixels,
corresponding to the sampling error.

(C) For the filtering stages, the correspondence between
the observed state and the predicted one is made by
application of the normal law (for a probability
0.99), the gap between observed and predicted must
be inferior to 2.8σ (σY and σS are given by
the kkP /,.̂ ). In the contrary case, the observation is

left but the hypothesis follows up until meeting a
correspondence with (H), or stops after a chosen
number n of iterations (for a 300 dpi image, we took
n=15 for the stave, 5 for the group bars, 3 or 4 for
the vertical segments).

The filtering process begins by sweeping the image,
as said before: each time a black pixel is
encountered, it is considered as a belonging to the
first span of a possible segment. Using initial
hypothesis (H), the purchase of the segment starts.
The action stops when the criterion (C) fails. Each
time a span is verifying hypothesis, its pixels are
eliminated from the image. The filtering stops when
all pixels of the image are treated.

Because of the connection of the group bars in our
case of scores, we make the filtering twice: to detect,
firstly, the stave, secondly, the group bars. In
addition, before the second filtering, we make an
image thinning so to disconnect the group bars.

At the end of filtering, all kinds of segments in the
image are recovered. To have the bottom layer, only
longest horizontal segments are extracted. The
remaining vertical segments are stems and measure
bars. Those with horizontal tendency correspond to
group-of-notes bars and others.

3   Recognition of the constructs from
basic entities
After the first stage, an intermediate one is dedicated
to detection and extraction of possible notes heads
(crotchets heads) by erosion of the image. A music
knowledge analysis then compares the expected
crotchets heads positions with the detected segments
so to identify the constructs of the musical scoring
[5,7,8,9,10]. For instance (see Fig. 2), two crotchet
heads + two vertical stem bars + one beam bar = a
beamed group, which validates the detection. The
remaining entities will be treated by the third stage.

4   Recognition and classification of the
remaining symbols
The remaining basic entities (symbols) are treated as
independent characters by use of the classical OCR
technique (Optical Character Recognition, [11]). For
the classification, a RBF neural network is chosen
(Radial Basis Function, [12,13]). This classifier is
well adapted to our system architecture: it has a
good classification reliability even not well
extracted entities like those deteriorated by the
extraction of the bottom layer. Besides, the answer
of the classifier is not one class like other neural
classifiers, but it returns for every class a probability
to match the symbol in entry, so we can choose the
most probable class in agreement with the high level
knowledge.
The neural network RBF is characterized by a
transition function which output is not a Boolean
{0,1} (as in [14,15] ), but a density of probability
(between 0 and 1). Most of the time [9], Gaussian

functions 
22

)(
−−−=Ψ ρCx

ex are used. Such
functions correspond to the distance from the vector
x (the symbol to be classified) to the model C (the
class) and is parameterized by a coefficient ρ
representing the field depth.
The number of neurons in the classifier is closely
linked to the number of learning models. If these last
are well chosen, the two numbers are equal. The size
of the model image is normalized, in the present
application, to a 24×24 pixels matrix. This size
permits an optimal classification [13].

5   Reconstruction of the music score
The reconstruction uses the context and the rules of
musical notation, which constitutes the high-level
knowledge [5,10,16]. This stage permits to
synthesize and analyze the results of the former ones



in order to reconstruct the original score. The
analysis is done measure by measure, for each
measure type it uses a specific analyzer, according
to the diagram of Fig. 3 that has been worked out
from musicologist knowledge.

Measure bar

Key

Accidental

Point

Note/Silence

Measure bar

fig3- Diagram of a simple measure analyzer
In case this analysis diagram does not provide a
coherent reconstruction of the score, there is to go
back to lower levels in order to determinate whether
an error occurred in the pattern recognition. This
error checking takes advantage of the RBF neural
networks chosen at the third step of recognition,
since alternative symbols were provided at this step
(with a lower probability): these other proposals can
be automatically checked to achieve the coherence.
The software user (musician or musicologist) will
intervene only in last recourse, in case this analysis
process fails.

6   An illustrative example
The following section illustrates the hierarchy of the
segmentation and treatment of the image. The
example is worked on a sample of an oriental score
with a rather rough scanning accuracy.

Original image:

Image after extraction of the bottom layer (by
Kalman-Bucy filtering)

erosion: after erosion the detection of the head
crotchets is made by criterion of size and shape

Three successive images of a one-shot action: after
detection of segments with horizontal tendency and
not belonging to the stave, of vertical segments and
of crotchet heads, the application uses its music
knowledge analysis, eliminating entities in the
following way:
1. beam bars: horizontal tendency segments near a
vertical one, which must be near a crotchet head.

2. crotchet heads : full ellipsis near a vertical
segment.

3. stems: vertical segment near a crotchet head.



The remaining, last image is to be processed directly
by neural network. The connected entities are
introduced at the entry of the neural classifier,
leading to the last stage of the recognition low level.
Finally, it is possible to proceed the high level
analysis of the document.

7   Conclusion
Presently, the first two steps are completely
implemented and work in an automated way. The
efficiency of the computation depends on the quality
of the hand-written sheets. In the running tests we
analyzed, segmentation met no problem,  but we
presume some problems may arise if the score is
very bad and if there are many accidental
connections between entities. With the hand-written
scores we checked, the efficiency of the two-layer
separation (stave detection) was of 100% and the
segmentation reconstruction, up to 80%.

The neural network step is under implementation:
we guess at a high recognition efficiency since the
images resulting from the first steps are well
extracted, without much noise: in such cases, RBF
classifiers are known to be quite efficient [15].
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