
A New Algorithm for Solving the Single Machine
Total Tardiness Scheduling Problem

DAVID ALCAIDE, JOAQUIN SICILIA
Departamento de Estadística, Investigación Operativa y Computación

Universidad de La Laguna
La Laguna, Tenerife.

SPAIN

Abstract: - We are analyzing a multifunctional machine and the set of tasks to be performed by the machine. Each task
has to be finished before a given due date. We are interested in finding a schedule of the tasks in such a way that the
machine complies with the due dates. The problem is formulated as a minimum total tardiness scheduling problem. An
heuristic algorithm for the problem is proposed. Finally, a comparative computational experience between this
algorithm and other heuristic and exact algorithms is reported.

Key-Words: - scheduling, tardiness problem, single machine, exact and heuristic algorithms CSCC99, pp.2851-2858

1 Introduction
Multifunctional machines are commonly used in
industrial process. These machines are capable of
performing different tasks or jobs. We can consider the
machines as executing intermediate steps in the tasks
performing process. The outputs of some machines are
inputs for other machines. To realize the industrial
process, we have to perform all the tasks involved in it.
Hence, we need to plan the different tasks of each
machine in such a way that the overall process is
optimally completed.

The problems of deciding plans of tasks to be
performed by these machines in such a manner that
several objectives are achieved can usually be
formalized as scheduling problems.

In this paper we consider the problem of
searching for a plan to perform all the activities of a
multifunctional machine in such a way that the total
tardiness is minimized. With this objective the search
tries to find schedules in which the machine complies
with the due dates. This is important because the
performed tasks must be completed for other machines
and processes to continue.

Several models for the minimum total tardiness
problem have been considered by different authors as
Potts and van Wassenhove (1987), Schrage and Baker
(1978), Lawler (1977), Lenstra and Rinnooy Kan
(1980), and Blazewicz (1987). The problem has been
proved to be NP-hard in the ordinary sense by Du and
Leung (1990). Thus, in practice, large problems can
not be optimally solved because the necessary
computational time is exponential and the storage

memory requirements are exponentially increased with
the number of tasks. Exact methods to find optimal
solutions for this problem can be seen in Baker (1974),
Lawler (1977), and Potts and van Wassenhove (1982).
The computational effort required by using exact
methods is enormous when the number of jobs
increases. In these cases, heuristic methods can provide
good solutions quickly.

Wilkerson and Irwin (1971) proposed an
heuristic method based on adjacent pair interchanges.
Fry et al. (1989) used the best of nine adjacent pair
interchange strategies and improved the quality of the
solutions obtained by Wilkerson and Irwin.

Holsenback and Russell (1992) have developed
an heuristic method that uses the dominance proprieties
of Emmons (1969). This method improves the previous
results by Fry et al. (1989) in several cases.

In this paper we also propose an heuristic
algorithm for the problem and make a comparative
computational study with the different algorithms cited
above. The paper is organized as follows: section 2
describes the problem, in section 3 we propose an
heuristic algorithm and analyze its computational
complexity. In section 4 the computational experience
is reported. Finally, section 5 presents conclusions and
final remarks.

2. The problem
A multifunctional machine has to perform a set of n
tasks or jobs {J1,...,Jn}. Each job j has a known
processing time pj and a given due date dj. The jobs
must be performed without preemption, i.e., when the

machine starts with the processing of a job j, the
machine has to continue the processing without any
pause. The jobs must be available to be processed at
time zero; furthermore, there are no precedence
relations among them.

When the multifunctional machine realizes one
of its functions, or when the machine performs a type
of task, the machine has to follow a sequence of
instructions. These instructions will come from a
control device. We assume that the times used by the
control device to interchange one set of instructions for
another are negligible. Note that we are not talking
about set-up times because the multifunctional machine
is always available to perform any of its functions. We
accept that these instruction set interchange times are
insignificant in the model because the control devices
are usually computerized and the selection among
different sets of instructions is, in practice, an
instantaneous selection.

Let Cj be the completion time of the job j, i.e.,
the instant when this job is finished. This instant varies
in relation to the position that the job j occupies in the
job sequence. If job j occupies the position k, then

[]C pj ii

k
=

=∑ 1
 , where [i] denotes the job at position i.

The value of the tardiness of job j is Tj = max

{0, Lj = Cj - dj}. The total tardiness problem, denoted

by 1||∑Tj, consists of finding a sequence σ =
[[1],[2],...,[n]] of jobs in such a way the total

tardiness []T jj

n

=∑ 1
 is minimized. Note that after the

tasks are performed by the machine, the processing
continues in others machines. Consequently, it is
important that such tasks be completed before their due
dates.

Now, we propose an heuristic method to solve
the problem.

3. Algorithm
The proposed algorithm can be described as follows.
An initial feasible solution is chosen to be the current
solution. Then, the neighbor sequences are generated by
changing the position of a previously selected job in the
sequence. Among the generated neighbors, we select the
sequence with the least total tardiness. If this sequence
is better than the current sequence, the current sequence
is updated, new neighbor sequences are again
generated, and another iteration in the search is made.
The algorithm stops when the current sequence is better
than all its neighbors.

To select the initial feasible sequence, it is
useful to keep in mind different results from specific

instances of the problem. In this sense, Baker (1974)
points out that, when the earliest due date sequence
(EDD sequence) has, at most, one tardy job (Tj > 0),
then this sequence is optimal. Also, he affirms that if all
the jobs have the same due date, that is, dj = d, ∀j 1=

1, ...,n , then the shortest processing time sequence
(SPT sequence) is an optimal one.

However, in more general cases of the problem,
it is not easy to define optimal sequences.

When the neighbor sequences are generated, we
can compute their total tardiness without again
computing all the completion times of the jobs. These
computations are done using the theorem proposed
below. To describe the theorem we need the following
notation:
- [j] = job in position j
- [jo] = candidate job to be changed from position jo to

another one
- Bjo-m = decreasing value of the completion time of

job [jo] when job [jo] is moved earlier from position jo
to position jo-m.

- Am = increasing the tardiness by postponing the jobs
[jo-m], [jo-m+1], ..., [jo-1].

- Da
m = difference between the total tardiness of the

current solution and the total tardiness from the
sequence obtained when the job [jo] is moved to the left

to the position jo-m (anticipation). This difference

could be negative.
- ∆Cm = increasing of the completion time of job [jo]

when it is postponed from position jo to position jo+m.

- Ym = increasing of the tardiness of job [jo] when it is

postponed from position jo to position jo+m.

- Zm = decreasing of the tardiness due to the fact of
anticipating the jobs [jo+1], ..., [jo+m].

- Db
m = difference between the total tardiness of the

current sequence and the total tardiness of the sequence
obtained when the job [jo] is moved to the right to the

position jo+m (delay). This difference could be

negative.
Theorem

Let jo be the position of the candidate job [jo]

in the current sequence. Let T be the total tardiness in
this sequence. Then, the following statements are true:

a) if the candidate job is moved to the position
jo-m, the new sequence has a total tardiness T' = T -

Da
m, where Da

m is recursively computed by the

formulas:

∆T

p if L

if L and p L

L p if L and p L

j m

j j m

j m j j m

j m j j m j j m

o

o o

o o o

o o o o o

−

−

− −

− − −

=

>

≤ ≤

+ ≤ >










[] []

[] [] []

[] [] [] [] []

,

,

,

0

0 0

0

A0 = 0; Am = Am-1 + ∆Tjo-m ;

Bjo = 0, Bjo-m = Bjo-m+1 + p[jo-m]

Da
m = min {Bjo-m ,T[jo]} - Am.

b) if the candidate job is moved to position
jo+m, the new sequence has a total tardiness T' = T -

Db
m, where Db

m is recursively computed by the

formulas:
∆Co = 0; ∆Cm = ∆Cm-1 + p[jo+m]

[]

[]{ } []
Y

C if L

max L C if L
m

m j

j m j

o

o o

=
>

+ ≤







∆

∆

,

, ,

0

0 0

[]

[] []{ } []
X

if L

min L p if Lj m

j m

j m j j m
o

o

o o o

+

+

+ +

=
≤

>







0 0

0

,

, ,

Zo = 0, Zm = Zm-1 + Xjo+m ;

Db
m = Zm - Ym.

Proof
a) If the candidate job [jo] is moved to the left,

only the tardiness T[j] with j = jo-m, jo-m+1, ..., jo
will change (see figure 1) according to the formulas:

[]
[] [] [] []′ = − ≤





= −

−

= −

−∑ ∑T
T p if p T

otherwise
j

j jj j m

j

j jj j m

j

o

o o

o

oo

o,

,

1 1

0

[] [] []{ }′ = + = − −T max L p j j m jj j j o oo
0 1, , ,..., .

Then, the tardiness T'[jo] is reduced in the

value:

[] []{ } []{ }min p T min B Tj jj j m

j

j m joo

o

o o
, ,

= −

−

−∑ =
1

when the job [jo] is moved to position jo-m. However,

the tardiness T[jo-m+i] with i = 0, 1, ..., m-1,

increases due to the increasing of completion times.

[]

∆T

p if T

if T and p L

L p if T and p L

j m i

j j m i

j m i j j m i

j m i j j m i j j m i

o

o o

o o o

o o o o o

− +

− +

− + − +

− + − + − +

=

>

= ≤

+ = >










[] []

[] [] []

[] [] [] []

,

,

,

0

0 0

0

Then, A Cm
j m ii

m

o
= − +=

−∑ 0

1
 represents the generated

increment.

Hence, []{ }D min B T Aa
m

j m j
m

o o
= −− , is the

total advantage in the change.

Figure 1. (a) Current sequence, (b) neighbor: the candidate
job is moved to the left, (c) neighbor: the candidate job is

moved to the right.
b) In the case in which the candidate job is

moved to the right the proof is similar. So, only the
tardiness [jo] with j = jo, jo+1, ..., jo+m could change

(see figure 1) according to the formulas:

[] [] [] []{ } [] []{ }′ = + = ++=∑T max T L p max T L Fj j j j ii

m

j j mo o o o o o
, ,

1

and for j = jo+1, ..., jo+m the new tardiness is:

[]
[]

[] []{ } []
′ =

≤

− >






T

if L

max L p if Lj

j

j j jo

0 0

0 0

,

, ,

Then the tardiness T[jo] increases by

[] [] []{ }max T L p Yj j j ii

m m

o o o
0

1
,− + + =+=∑

while for each j = jo+1,...,jo+m the tardiness T[j]
decreases by min{L[j], p[jo]} if L[j] > 0, and remains

the same in the remaining cases.

Hence, the obtained reduction is Zm = ∑j∈J'
min {L[j],p[jo]}, where J'={j / jo +1 ≤ j ≤ jo + m and

L[j] > 0}, and the total advantage in this change will be

Db
m = Zm - Ym.�

As the EDD sequence minimizes the maximum
tardiness, we consider this sequence as the initial or
seed sequence. If in the sequence there are two or more
jobs with the same due dates, we break the tie by
sorting these jobs according to no decreasing
processing times.

We propose an heuristic method for the total
tardiness problem based on the above theorem. The
algorithm works in the following way: first, the
candidate job to be moved is chosen (step 2); next, the
better change is determined, i. e., if we have to
anticipate or to delay the selected job. The variation of
the total tardiness value if we anticipate the job is
computed in steps 4 and 5. Steps 7 and 8 compute the
variation if we delay the candidate job. The decision to
move the job to the best position is considered in step 9.

If we do not make any change, then the total tardiness
is not reduced using this candidate job and we select
another candidate job. The process stops when there is
not any change that improves the total tardiness.

The algorithm could be presented in the
following way:
Algorithm
1. Determine the EDD sequence, which will be seed or

initial sequence. Let [[1],[2],...,[n]] be the job

sequence. Compute [] [] []L p dj i ji

j
= −

=∑ 1
 and

Tj=max{0, L[j]} ∀j = 1,...,n. Calculate

[]T T jj

n
=

=∑ 1
. Initialize the list of tested jobs, i.e.,

P = ∅ .
2. Choose the index jo such that L[jo] = max{L[j] / 1

≤j≤n}. The job [jo] is the candidate to change

position.
3. If jo = 1, go to step 6. If jo ≠ 1, but T[jo] = 0, go

to step 6. Otherwise, set m=1, G = 0, q = 0, A0 =
0, Bjo = 0.

4. (Anticipation). If m=jo, go to step 6. Otherwise,

compute the following values:

∆T

p if L

if L and p L

L p if L and p L

j m

j j m

j m j j m

j m j j m j j m

o

o o

o o o

o o o o o

−

−

− −

− − −

=

>

≤ ≤

+ ≤ >










[] []

[] [] []

[] [] [] [] []

,

,

,

0

0 0

0

Am = Am-1 + ∆Tjo-m ; Bjo-m = Bjo-m+1 + p[jo-m]

Dm = min {Bjo-m ,T[jo]} - Am.

5. - If Dm = T[jo] , then set q = jo - m, G = Dm ,

and go to step 6.

- If Dm ≠ T[jo] and Dm > G, then set q = jo - m,

G = Dm. Put m=m+1 and go to step 4.

- If Dm ≠ T[jo] and Dm ≤ G, then put m=m+1

and go to step 4.
6. If jo = n, go to step 9. If jo ≠ n, set m=1,∆Co=0,

and Zo = 0.
7. (Delay). If m = n - jo + 1, go to step 9. Otherwise,

compute the following values:
∆Cm = ∆Cm-1 + p[jo+m]

[]

[]{ } []
Y

C if L

max L C if L
m

m j

j m j

o

o o

=
>

+ ≤







∆

∆

,

, ,

0

0 0

[]

[] []{ } []
X

if L

min L p if Lj m

j m

j m j j m
o

o

o o o

+

+

+ +

=
≤

>







0 0

0

,

, ,

Zm = Zm-1 + Xjo+m ; Dm = Zm - Ym.

8. - If Dm > G, set q = jo + m and G = Dm . Set m

= m + 1 and go to step 7.

- If Dm ≤ G, set m = m + 1 and go to step 7.
9. (Change). If q = 0, no changes are made. Set P =

P ∪ {jo} and go to step 10 (searching for a new

candidate).
- If q > 0, move the job [jo] to the position q and

"slide" all the necessary jobs. So, let MIN = min
{q, jo}, and MAX = max {q, jo}.

- if MIN = q, set s(q) = [jo], s(q+1) = [q],...,

s(q+k) = [q+k-1],..., s(jo) = [jo-1].

- if MIN = jo, set s(jo) = [jo+1], ..., s(jo+k) =

[jo+k+1], ..., s(q-1) = [q], s(q) = [jo].

Before finishing this step, rearrange the sequence
in such a way that the job at position i of the
sequence is [i] = s(i), ∀ i ∈ [MIN, MAX].

Compute again L[j] and T[j] for all j ∈ [MIN,

MAX] using the formulas of step 1. Set T = T - G,
P = ∅ and go to step 2.

10. - If card(P) = n, stop. The sequence
[[1],[2],...,[n]] is the solution given by the
algorithm, being T the value of the total tardiness
for this sequence.
- If card(P) ≠ n, then find the index j1 such that

L[j1] = max {L[k] / k ∉ P}. Set jo=j1 and go to

step 3.
Now, we study the computational complexity

of this algorithm. The algorithm has a computational

complexity of O(n p jj

n2

1=∑). This amount is

computed in the following way. Step 1 requires O(n log
n) operations, while steps 2 to 10 require O(n) for each
iteration. The number of iterations for these steps is at
most ∑jTj(EDD) - Tmax(EDD), being Tj(EDD) the

tardiness of job j in the EDD sequence and Tmax(EDD)

the maximum tardiness in this sequence. The key is to
determine the value of this expression. The interval of

variation of this value is bounded by n p jj

n

=∑ 1
.

Hence, the recurrence of steps 2 to 10 gives us a

complexity of 0(n p jj

n2

1=∑) which is greater than the

complexity of step 1 and, as a consequence of that, this
expression is the complexity of the algorithm.

Note that the value ∑jTj(EDD) - Tmax(EDD)

is computed in step 1 and at that time, we can predict
the heuristic behavior with respect to the convergence
speed of the algorithm. It is not necessary to run the
entire algorithm for it.

In the next section we report a computational
study where the proposed algorithm and algorithms of
other authors have also been codified and tested.

4. Computational Experience
In this section we do a comparative computational
study among exact algorithms, the proposed heuristic
algorithm and other heuristic algorithms. All these
algorithms are codified in C programming language.
We use a personal compatible computer 80486 DX
with 50 Mhz.

The test problems used are the problems
generated by Potts and van Wassenhove (1982). With
this generator, the processing times of each job are
taken from U[1,100]. Next, the due dates dj are
generated. For that, we compute the amount of the
processing times P = ∑pj and take the due dates from

the U P TF
RDD

P TF
RDD

(), ()1
2

1
2

− − − +





where the parameters TF and RDD vary in the set of
values {0.2, 0.4, 0.6, 0.8, 1.0} and {0.2, 0.4, 0.6, 0.8}
respectively. Hence, for each value of n, and each set of
processing times generated we build 20 instances. We
have fixed a running time limit of 5 minutes for the
exact algorithms.

The considered dynamic programming exact
algorithms are: basic dynamic programming algorithm
of Baker, dynamic programming algorithm of
Srinivasian, dynamic programming algorithm of
Lawler, dynamic programming algorithm of Lawler
with the dominance properties of Elmaghraby, dynamic
programming algorithm of Schrage and Baker, and the
dynamic programming algorithm Schrage and Baker
with the dominance properties of Elmaghraby.
Computational experiences of these algorithms are
reported in tables 1 and 2.

Also exact algorithms based on decomposition
theorems have been considered. These algorithms are:
decomposition algorithm of Lawler, decomposition
algorithm of Lawler with reduced search, and the
decomposition algorithm of Potts and van Wassenhove.
The computational study of these algorithms is reported
in the third table.

The heuristic algorithms considered are:
algorithm of Wilkerson and Irwin, algorithm of Fry,
Macleod, Vicens and Fernández, algorithm of
Holsenback and Russell, and, finally, the proposed

heuristic algorithm. Computational results are given in
tables 4 and 5.

The times are CPU times of a personal
computer 80486 DX with 50 Mhz.

The column titles in tables 1, 2 and 3 mean the
following:
n = number of jobs
nprob = number of generated problems
solved = number of solved problems before the time

limit.
t_average = average running times.
t_worst = maximum running time.
sets = number of sets generated with the dynamic

programming formulas.

Basic DP Baker
n nprob solved t_average t_worst sets
5 100 100 0.007 0.055 32

10 100 100 0.341 0.549 1024
15 100 100 30.212 30.879 32768

DP Srinivasian
n nprob Solved t_average t_worst sets
5 100 100 0.001 0.055 5

10 100 100 0.026 0.330 79
15 100 100 2.969 30.440 3796

DP Lawler
n nprob Solved t_average T_worst sets
5 100 100 0.015 0.055 6

10 100 100 0.025 0.055 18
15 100 100 0.044 0.330 53
20 100 100 0.120 1.209 111
30 100 100 1.510 46.978 763
40 100 98 16.829 202.033 2997
50 100 88 24.435 283.462 3649
60 100 79 12.792 155.769 2724
70 100 59 4.395 32.143 1083
80 100 58 4.308 64.121 954
90 100 57 6.356 43.846 1287

DP Schrage and Baker
n nprob solved t_average T_worst sets
5 100 100 0.003 0.055 6

10 100 100 0.013 0.110 18
15 100 100 0.083 1.429 55
20 100 100 0.338 7.473 115
30 100 100 34.151 109.967 808
40 100 79 14.197 205.604 467
50 100 69 20.091 243.462 581
60 100 61 33.034 245.000 742
70 100 56 14.947 169.505 496
80 100 56 21.580 227.143 493
90 100 51 18.234 254.231 426

Table 1. Computational results for exact algorithms of
dynamic programming (DP): basic DP of Baker, DP of
Srinivasian, DP of Lawler, DP of Schrage and Baker.

DP Lawler (with Elmaghraby)
n nprob solved t_average T_worst sets
5 100 100 0.016 0.055 6

10 100 100 0.018 0.055 16
15 100 100 0.039 0.275 44
20 100 100 0.105 0.989 84
30 100 100 0.737 11.099 428
40 100 100 11.485 189.121 1968
50 100 93 17.919 182.637 2731
60 100 85 15.608 271.099 2418
70 100 70 9.992 84.945 1719
80 100 66 7.959 79.890 1235
90 100 69 11.222 94.560 1606

DP Schrage and Baker (with Elmaghraby)
n nprob Solved t_average t_worst sets
5 100 100 0.004 0.055 6

10 100 100 0.013 0.165 18
15 100 100 0.079 1.429 55
20 100 100 0.334 7.418 115
30 100 100 34.171 109.626 808
40 100 79 14.220 205.714 467
50 100 69 20.119 243.516 581
60 100 61 33.034 245.440 742
70 100 56 14.981 170.000 496
80 100 56 21.635 227.198 493
90 100 51 18.295 254.231 426

Table 2. Computational results for exact dynamic
programming algorithms DP of Lawler, and DP of
Schrage and Baker using dominance rules done by

Elmaghraby.

Decomposition Algorithm of Lawler
n nprob solved t_average t_worst Sets
5 100 100 0.002 0.055 12

10 100 100 0.116 0.330 498
15 100 100 4.640 16.648 18639

Dec. Alg. of Lawler (with reduced search)
n nprob Solved t_average t_worst sets
5 100 100 0.003 0.055 7

10 100 100 0.073 0.275 236
15 100 100 3.108 22.747 9254

Potts and Van Wassenhove
n nprob solved t_average t_worst Sets
5 100 100 0.001 0.055 4

10 100 100 0.003 0.055 11
15 100 100 0.004 0.055 25
20 100 100 0.015 0.055 45
30 100 100 0.054 0.440 187
40 100 100 0.130 0.824 411
50 100 100 0.383 6.923 1179
60 100 100 0.861 24.505 2669
70 100 100 1.938 27.582 6012
80 100 100 4.751 155.879 14373
90 100 100 4.755 71.374 14420

100 100 100 10.386 225.110 29765
110 100 100 25.332 380.495 68583
120 100 100 104.676 4558.846 274545
130 100 100 90.390 1572.912 230954
140 100 100 413.945 17608.297 1038676
150 100 100 591.719 22586.209 1503148

Table 3. Computational results for exact decomposition
algorithms of Lawler, and Potts and van Wassenhove.

Tables 4 and 5 refer to heuristic algorithms. In
these cases there is no fixed time limit. The heuristic
algorithms have been compared with the exact
algorithm of Potts and van Wassenhove. We compute
the ratio: optimal solution / heuristic solution. The
titles of the columns have the following meaning:
n = number of jobs
nprob = number of generated problems
t_exact = average running time of exact algorithm.
t_heur = average running time of the heuristic

algorithm

% = average ratio
z

z
x

h

*
100 , where z* is the value of

the optimal solution and zh the value of the
heuristic solution.

Wilkerson and Irwin
n nprob % t_exact t_heur
10 100 98.10 0.004 0.000
20 100 98.68 0.015 0.002
30 100 96.39 0.051 0.002
40 100 96.58 0.115 0.004
50 100 95.75 0.336 0.008
60 100 95.03 0.788 0.015
70 100 94.97 2.027 0.024
80 100 95.24 5.004 0.034
90 100 96.39 4.992 0.045
100 100 95.47 10.960 0.063
110 100 95.80 25.332 0.102
120 100 95.41 104.676 0.147
130 100 95.94 90.390 0.206
140 100 94.80 413.945 0.251
150 100 93.89 591.719 0.322

Fry, Macleod, Vicens and Fernández
N nprob % t_exact t_heur
10 100 99.58 0.004 0.003
20 100 99.30 0.015 0.013
30 100 98.41 0.051 0.035
40 100 98.41 0.115 0.071
50 100 98.41 0.336 0.134
60 100 98.23 0.788 0.223
70 100 98.51 2.027 0.349
80 100 98.52 5.004 0.521
90 100 98.48 4.992 0.722
100 100 98.42 10.960 0.981

110 100 98.49 25.332 1.304
120 100 98.05 104.676 1.668
130 100 98.20 90.390 2.116
140 100 98.36 413.945 2.624
150 100 98.22 591.719 3.184

Table 4. Computational results for heuristic
algorithms of Wilkerson and Irwin, and Fry,

Macleod, Vicens and Fernández.

Holsenback and Russell
n nprob % T_exact t_heur
10 100 99.92 0.004 0.002
20 100 99.71 0.015 0.003
30 100 99.35 0.051 0.004
40 100 99.08 0.115 0.007
50 100 98.92 0.336 0.008
60 100 98.50 0.788 0.012
70 100 98.21 2.027 0.015
80 100 98.56 5.004 0.022
90 100 98.77 4.992 0.027
100 100 97.96 10.960 0.027
110 100 98.52 25.332 0.034
120 100 98.51 104.676 0.042
130 100 98.20 90.390 0.044
140 100 97.68 413.945 0.057
150 100 97.85 591.719 0.060

Proposed heuristic algorithm
n nprob % t_exact t_heur
10 100 97.75 0.005 0.002
20 100 97.57 0.015 0.014
30 100 97.20 0.051 0.045
40 100 97.98 0.114 0.108
50 100 97.97 0.342 0.236
60 100 98.12 0.785 0.432
70 100 97.26 2.027 0.754
80 100 98.37 5.004 1.168
90 100 97.98 4.992 1.761
100 100 98.42 10.960 2.593
110 100 98.75 25.332 3.680
120 100 98.52 104.676 4.954
130 100 98.14 90.390 6.521
140 100 98.24 413.945 8.423
150 100 98.25 591.719 10.774

Table 5. Computational results for heuristic
algorithm of Holsenback and Russell, and the

proposed heuristic algorithm.

From computational experience we observe
that the first dynamic programming algorithms (basic
dynamic programming algorithm of Baker and
Srinivasian’s algorithm) are limited since the number of
sets to explore with dynamic programming increase
exponentially when the number of jobs are increased.
Later, dynamic programming algorithms like the
algorithm of Lawler and the algorithm of Schrage and

Baker, avoid to a certain extent this difficulty and allow
us to solve medium-sized problems. Applying in those
algorithms dominance rules like Elmaghraby’s rules, it
is possible sometimes to reduce the number of sets to
explore and the total memory requirements.

Using the decomposition algorithms, the
reduction is more significant. As the memory
requirements are smaller, it allows us to solve problems
with more jobs. This is specially clear with Potts and
van Wassenhove’s algorithm. This algorithm is the
exact algorithm with the best behavior in the test
problems considered. Hence, we have taken this exact
algorithm as the reference to study the heuristic
algorithms.

Taking into account the complexity of the
problem, and as the computational experience shows,
the heuristic algorithms seem to be the best way to
achieve acceptable solutions in reasonable times when
the number of jobs is 100 or more. Tables 4 and 5
show that the heuristics guaranteed a precision of
approximated 98%. If we observe the precision of
heuristic algorithms, when the number of jobs is less
than 100, the best one is the Holsenback and Russell
heuristic, next the Fry, Vicens, Macleod and Fernández
one, the proposed heuristic, and finally the Wilkerson
and Irwin one. However, if the number of jobs is
greater than 100, in precision terms, the best heuristic
seems to be the proposed heuristic, next the Fry,
Vicens, Macleod and Fernández one, the Holsenback
and Russell heuristic, and the Wilkerson and Irwin one.

Note that for n greater than 100, the precision
of the proposed heuristic and the heuristic of Fry,
Vicens, Macleod and Fernández tend to increase when
n increases and always with a precision greater than
98%; while the precision of the Wilkerson and Irwin’s
heuristic and Holsenback and Russell’s heuristic tend to
decrease and are less than 98% when n increases.

5. Conclusions and final remarks
Multifunctional machines are commonly used in
industrial process. These machines can be considered
as executing intermediate steps in the process. The
output tasks of some machines are input tasks for other
machines. To complete certain industrial processes, we
need to perform all the tasks involved in the process. To
do it with optimality, it can be useful to schedule
advantageously the different tasks of each
multifunctional machine.

In this paper we have considered the problem
of scheduling the activities of a multifunctional machine
in such a way that the machine complies with the due
dates of its tasks. The problem is formulated as a
minimum total tardiness scheduling problem. An

heuristic algorithm to solve the problem is proposed
and a comparative computational study of this heuristic
with other heuristic and exact algorithms is reported.

Future developments of this work could be to
situations in which task preemptions are allowed, there
are precedence relations among tasks, or the tasks have
different release dates.

References
[1]. D. Alcaide, Problemas de planificación y

secuenciación determinística: modelización y
técnicas de resolución, Ph.D. Thesis. DEIOC.
Universidad de La Laguna, 1995.

[2]. K.R. Baker, Introduction to sequencing and
scheduling, John Wiley, 1974.

[3]. J. Blazewicz, Selected topics in scheduling theory,
Annals of Discrete Mathematics, Vol. 31, 1987, pp.
1-60.

[4]. P. Chrétienne, E.G. Coffman, Jr., J.K. Lenstra and
Z. Liu (eds.) Scheduling theory and its
applications, John Wiley and Sons, 1995.

[5]. J. Du and J.Y.-T. Leung, Minimizing total
tardiness on one machine is NP-hard, Math. of
Oper. Res. Vol. 15, No. 3, 1990, pp. 483-495.

[6]. H. Emmons, One machine sequencing to minimize
certain functions of job tardiness, Oper. Res. Vol.
17, 1969, pp. 701-715.

[7]. T.D. Fry, L. Vicens, K. Macleod and S.
Fernández, A heuristic solution procedure to

minimize T on a single machine, Journal of the
Operations Research Society, Vol. 40, No. 3, 1989,
pp. 293-297.

[8]. J.E. Holsenback and R.M. Russell, A heuristic
algorithm for sequencing on one machine to
minimize total tardiness, Journal of the Operations
Research Society, Vol. 43, No. 1, 1992, pp. 53-62.

[9]. E.L. Lawler, A pseudopolynomial algorithm for
sequencing jobs to minimize total tardiness, Annals
of Discrete Mathematics, Vol. 1, 1977, pp. 331-
342.

[10]. E.L. Lawler, Efficient implementation of dynamic
programming algorithms for sequencing problems,
Report BW 106, Mathematisch Centrum,
Amsterdam, 1979.

[11]. J.K. Lenstra and A.H.G. Rinnooy Kan,
Complexity results for scheduling chains on a single
machine, European Journal of Operations
Research, Vol. 4, 1980, pp. 270-275.

[12]. C.N. Potts and L.N. Van Wassenhove, A
decomposition algorithm for the single machine
tardiness problem, Operations Research Letters,
Vol. 1, No. 5, 1982, pp. 177-181.

[13]. C.N. Potts and L.N. Van Wassenhove, Dynamic
programming and decomposition approaches for the
single machine tardiness problem, European
Journal of Operations Research, Vol. 32, 1987, pp.
405-414.

[14]. Schrage and K.R. Baker, Dynamic programming
solution of sequencing problems with precedence
constraints, Oper. Res., Vol. 26, 1978, pp. 444-
449.

[15]. V. Srinivasian, A hybrid algorithm for the one
machine sequencing problem to minimize total
tardiness, Naval Research Logistic Quarterly,
Vol. 18, No. 3, September, 1971.

[16]. L.J. Wilkerson and J.D. Irwin, An improvement
algorithm for scheduling independent tasks,
A.I.I.E. Trans. Vol. 3, 1971, pp. 239-245.

