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1. Introduction
Many synonymous terms are used to define the type of
state space model we are working on: generalized state
space system, implicit system, differential - algebraic
equations, singular system, descriptor system or semi-
state system.
The descriptor systems have attracted an increasing
interest of many researchers in the last twenty years [1],
[2], [5] and [11]. Descriptor systems appear in many
applications, either during the study of regular systems
(linearization of implicit systems, interconnection
between sub-systems, inversion of systems, multi time
scale systems,…), or as a process model (electrical
networks, robotics, economics,…). Comparison of some
specific characteristics between the regular and the
singular cases points out that the latter is not a trivial
extension of the regular case.
The bond graph methodology leads to unified
representation and the same calculation procedure of the
state equation, whatever the physical domain. Some
problems occur when algebraic loops or derivative
causalities appear in the bond graph model, which may
induce manipulations on the equations to avoid
simulation difficulties.
This paper is organized as follows: section 2 establishes
the problem statement, in section 3 we present the
variables in a bond graph. Then the main result, in the
general case, is given section 4 and 5: the graphical
determination of matrices constituting a new descriptor
form on Bond Graph models, and the symbolic calculus
of the coefficients of the generalized characteristic
polynomial based on causal cycle families gains.

2. Problem Statement
Let us consider the general linear time invariant
multivariable state model, described equation (1)
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with the state vector nx ℜ∈ , the input vector mu ℜ∈ and

the output vector py ℜ∈ .

If E is non singular, the system is said to be regular,
equation (1) can be written as (2):




+=
+=

DuCxy
uBxAx ''&  (2)

where BEBAEA 1'1' , −− ==

If E is a singular matrix, equation (1) represents a
descriptor system.

The solvability of model (1) is defined as the existence of
a unique solution for any given control function
sufficiently differentiable u(t) and any given admissible
initial condition x(0). In the frequency domain, the use of
Laplace transform leads to write Eqn.(1) as Eqn (3), with
necessary and sufficient conditions of existence and
unicity for the solution.
The strongest condition is det (sE - A) ≠ 0. for almost
every ∈s ∀
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In this case, the pencil (sE-A) is regular. The output and
the input under null initial conditions (Ex(0) = 0) are
related by the non strictly proper transfer function, as
follows:

Y(s) = T(s).U(s)
with T(s) = C(sE-A)-1B + D

In the generalized case, the choice of the initial vector
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x(0) must not be arbitrary and must verify some
conditions of consistency. The response of the system
can exhibit:
F  d exponential modes.
where   d = deg{det(sE-A)} ≤  r = rank(E)
             rank(E) is the actual order of system.
             the equality r = d occurs in the regular case.
 F (r-d) impulsive (or distributional) modes
corresponding to (sE-A) losing rank at s = ∞, hence to
poles at infinity.

The solvability of descriptor system is one of the main
structural properties which every study must begin with,
their important role appears precisely when studying
infinite structure from the transfer function of the system.

3. Bond Graph Approach
We study here the case where the bond graph model
contains some I, C-elements in derivative causality when
an integral causality assignment is performed.

The state vector 
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x  is composed of the energy

variables associated with  the I and C dynamical elements
respectively in integral and derivative causality.

dim x  =  dim ix  +  dim dx   =  in +  dn
The assumption is made that there is no signal bond in
the bond graph model. For sake of simplicity, we will
suppose in the following that there are no algebraic loops
between R-elements in the studied bond graph model.

The different state, input and output vectors are
represented by:
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We recall here the definition of the causal path generalized
length was introduced in [7] as an extension of the
definition of the  causal path length [8] and the zero-order
causal path [12]

Definition 1
i) The generalized length, denoted g

kL , of a causal path

from an element ie  to an element je , where ie  belongs

to the set { }C,I,S,S,R fe  and je  belongs to

{ }fe D,D , is equal to k, given by (4):

( ) ( )di NNk −−= σ1 (4)

where,
σ = 0 if an preferred integral causality assignment is

performed on the bond graph model,
σ = 1 if a preferred derivative causality assignment is
performed on the bond graph model,

IN  (resp. DN ) is the number of I or C-elements in
integral (resp. in derivative) causality met when
following the causal path from ie  to je .

ii) If ie  belongs to{ }C,I,R,S,S fe  and je  belongs to

{ }C,I , the generalized length of the causal path between

ie  and je  is equal to (k+1) and noted g
1kL + .

Remark
Here we will only consider the case where σ = 0. The
case σ = 1 is used for the input –output decoupling .

Definition 2
A closed causal path which contains several {I,C}
elements (with any causality) is called a causal cycle.

4. Symbolic Calculus of the state space
representation
4.1 Representation of a Linear descriptor

system from a Bond Graph
The descriptor system is represented by equation (1) with
E a singular matrix
Equation (1) can be written as follows:
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The expression of submatrices composing E, A, and B in
equation (5), are deduced from the junction structure
equation built from the bond graph model.

The different vectors involved in a bond graph are linked
through the junction structure as:
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0

00 (6)

S22 is a null matrix because two dependent variables {(I,
C) in derivative causality } are not directly causally
connected (it is possible to simultaneously change their
causality to obtain two dynamical elements in integral
causality). S23 and S32 are also null matrices because it is
impossible to have a derivative causality on elements I or
C causally connected to linear R- elements (it is possible
to exchange the causalities).
Elementary laws are associated with components:
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zi = Fi xi

xd = (Fd)
-1 zd        (7)

Dout = L Din     

zi ,zd are called complementary state vectors, and  Fi , Fd

are diagonal matrices composed of 1/I and 1/C
coefficients. These matrices are always invertible for
bond graph models without multiport elements. 

Din and Dout denote the vectors composed of variables
flowing respectively into and out of the R-components ;
L is a diagonal matrix composed of resistance and
conductance parameters.

From (6) and (7)  comes:
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which combined with (5) gives :
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Both matrices Ai and  Bi  keep the same expression,
as developed in [10]:

Ai = [S11 + S13L(I- S33L)-1 S31]Fi

Bi = [S14 + S13L(I- S33L)-1 S34] (9)

(I = the identity matrix of appropriate dimension).

4.2 Symbolic calculus of Generalised

state equation
The symbolic calculus of the descriptor form (5) for
continuous linear singular systems directly, from their
bond graph model aims to allow many structural
properties study.

Determination of the E-matrix

Proposition 1
In the idE - matrix, the element jkide )( -term is obtained

by expression (10):

( )( )∑
∈

−=
Pp

p
jikdLjkid xxGe g )(,)(

~
)(

1

(10)

where { }dnk ..1∈  and { }inj ..1∈

))(,)((
~

1
jikdL

xxG g  is the constant term of the gain of

the causal path of generalized length g
1L  from kdx )(  to

jix )( , ( iN = 0,  dN  = 0).

P  is the list of all causal paths linking kdx )(  to jix )(

Determination of the A-matrix
• iA  is calculated independently of the elements in

derivative causality as in the regular case (see
appendix).

• ddA = -Fd  diagonal matrix composed of the

parameters associated with I and C elements

composing dx , with negative sign.

• diA   represent causal relations between ix and dx .

Proposition 2

In the Adi -matrix, the (adi) hj -term is obtained by
expression (11):

( )( ) ))((~*)(,)(
~

)(
1

ji
Pp

p
hdjiLhjdi xgxxGa g∑

∈

=

 (11)

where  { }dnh ..1∈  and  { }inj ..1∈

))(,)((
~

1
hdjiL

xxG g  is the constant term of the gain of the

causal path of generalized length g
1L  (Ni = 0,  Nd = 0)

from jix )(  to hdx )(  .

))((~
jixg  is the constant term of the jth transmittance of

the I or C element in integral causality associated

with jix )( .

Determination of the B-matrix
• iB  is calculated by ignoring elements in derivative

causality as in the regular case (see appendix).

• dB is calculated using causal paths between the

inputs u and dx .

Proposition 3

In the control matrix Bd , the term (bd)jk is obtained by
(12):

( )( )∑
∈

=
Pp

p
jdkLjkd xuGb g )(,

~
)(

1

(12)
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where { }mk ...1∈   and  { }dnj ...1∈

))(,(
~

1
jdkL

xuG g  is the constant term of the gain of the

causal path of generalized length g
1L  (Ni = 0,  Nd =0)

.from the ( eS  or fS ) associated with uk  to dynamical

element (I,C) in derivative causality associated with

jdx )( .

Example
Consider the electrical system (figure 1) and the
associated bond graph model (figure 2).
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Figure 1: electronic circuit
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Figure 2: Bond graph model

The 1I , 1C  and 2C  are in integral causality, 3C  is in
derivative causality.

The different vectors are given by:
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The matrices in equation (1) are obtained as:
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5. Bond Graph Interpretation of
    det [sE -A]
The characteristic polynomial is equal to the denominator
of the transfer function BAsECsT 1)()( −−= , expressed

as:  ∑
=

−=−=
n

i

in
iAE spAsEsp

0
),( )( .

where    n =  dim xi + dim xd  =   ni + nd

In the following, a graphical interpretation of the
polynomial coefficients is presented. This method is
based exclusively on causality handling and causal cycle
families concept. Because the bond graph model contains
some elements in derivative causality, it requires a new
definition of the order of a causal cycle.

Definition 3
A causal cycle family is a set of disjoint causal cycles.
This family is said to be of order t, if this family contains
Ni independent dynamical elements and Nd statically
dependent elements with relation  t =  Ni  - Nd.

Remark
Contrary with the generalized length of a causal path, any
possible combination of disjoint causal cycles to obtain a
precise order is accepted .

Proposition 4
Each coefficient pi  of  p(E,A)(s)  is equal to the sum of the
constant terms of the gain of causal cycle families of
order  i - Nd  in the bond graph model.
Each causal cycle family gain has the sign (-1)d if the
family under consideration has d disjoint causal cycles.

∗  for   i = 0,1,…,n  and   i ≠ Nd
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∗ If  i = Nd , 
dnp is related to causal cycle families of

order zero ( t = 0). Its expression is given as:

)(~

~
)1(1 0

d

j
j

d

n xg

G

p

j

d Π









∗−+

=
∑

 (14)

where
 j : the jth. causal cycle family of order    i - Nd.
dj: number of disjoint causal cycles constituting the jth.
     family.

)(~
dxg : the constant term in transmittance of elements

{I, C} with a derivative causality in the bond graph

model. dd IIg =)(~    and  dd CCg =)(~ .

dNi
jG −~

: the gain constant term of jth. causal cycle family

of  i- Nd  order.

Illustrative  Example

The bond graph model of figure (2) has three dynamical
elements in integral causality (C1,C2,I1) and one
dependent element C3 (n = 4, ni = 3,  nd = 1).

So the characteristic polynomial can be written as:

4
1

3
2

2
3

1
4

0),( )( pspspspspsP AE ++++=

The bond graph model does not contain any causal cycle
family of order (-1) (causal boucle between resistive
element and dependent element ),  p0 = 0.
The  p1 is calculated using formula (14)  ( i - Nd =0). but
p2, p3 and p4 are determined by formula (13). For sake of
simplicity, only the calculation of coefficients p1 and p4

of characteristic polynomial is developed. The table 1
gathers the causal cycle families required for the
calculation of these coefficients.
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Coefficient pi Corresponding Causal Cycle Families in the
bond graph model

Gains

           p1

two causal
cycles families
of zero order
(i -Nd = 0).

(1). (C3 - C1) :  f10-f9-f5-f4-e4-e5-e9-e10               (d = 1)

(2). (C3 - C2) : f10-f9- f6 -f7- e7- e6- e9- e10                 (d = 1)
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           p4

causal cycles
families of order
3. ( i -Nd = 3).

1. cycle causal family:  {(R1 ,C1 ); (I1 ,C2 )}          (d = 2)

     (R1 ,C1 ) : f2-f3-f4-e4-e3-e2

     (I1 ,C2 ) :  f8-f7-e7-e8

2. cycle causal family: :{(R2 ,C1 ); (I1 ,C2 )}          (d = 2)

     (R2 ,C1 ) : f11-f9-f5-f4-e4-e5-e9-e11

     (I1 ,C2 ) :  f8-f7-e7-e8
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6. CONCLUSION

In this paper we have proposed a representation of
singular system deducted from the bond graph model.
Then, the symbolic calculus of this representation is
given. It is followed by a method, based exclusively on
causality handling and concept of causal cycle families
allowing the symbolic determination of characteristic
polynomial. These results are necessary for the structural
properties analysis like controllability, observability…
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APPENDIX
Definition
The gain of a causal path in a bond graph model
is given by (A1):

( ) ( ) ( ) )(***1)(
11

10 sTrmsG r
j

k
j

i

h
i

nn ji ∏∏
==

+−=
βα

with

0n : the total number of arrow reversals at 0-junctions,
when the path follows the flow variable,

1n : the total number of arrow reversals at 1-junctions,
when the path follows the effort variable,
α: : the number of TF-elements in the path,
β  : the number of GY-elements in the path,

im  and jr  are respectively the ith TF and the jth GY

modulus,

ih  = ± 1 depending on the ith TF causality assignment,

jk = ± 1 depending on the jth GY causality assignment,

rT (s): the product of transmittances of the (I, C, or R)-
elements involved in the causal path. If no (I, C, or R)-

elements are involved in the causal path, then rT (s) = 1.
The constant term of G(s), when it depends on the

Laplace operators is denoted G
~

 obtained by suppressing
the s-operator in G(s).

Symbolic determination of the A and B for linear regular
system directly from the bond graph model.

Property 1
In the state matrix Ai, the elements jha  is obtained by

equation (A2):

( )( ) ( )h
Pp

pjhLjh xgxxGa ~*,
~

1∑
∈

=  (A2)

where { }nh K1∈  and { }n1j K∈

( )jhL xxG ,
~

1
 is the constant term in the gain of the causal path

of length 1L  from the I or C elements associated with hx  to

those associated with jx . ( )hxg~  is the constant term in the

gain of hx , ( )
I

1
Ig~ = and ( )

C

1
Cg~ = .

Property 2
In the control matrix Bi, the term jkb is obtained by (A3):

( )( )∑
∈

=
Pp

pjkLjk xuGb ,
~

1
(A3)

where     { }mk K1∈  and   { }n1j K∈

( )jkL xuG ,
~

1
 is the constant term in the gain of the causal

path of length 1L  from the ( eS  or fS ) associated with

ku  to the I or C elements associated with jx .


