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Abstract: The aim of the paper is to show how a bond graph model of a singular system is a good tool for the
symbolic calculus of the associated mathematical model. We propose a method based on causal path handling
leading to the generalized state equation determination, and the calculation of the generalized characteristic

polynomial.
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1. Introduction

Many synonymous terms are used to define the type of
state space model we are working on: generalized state
space system, implicit system, differential - algebraic
equations, singular system, descriptor system or semi-
State system.

The descriptor systems have attracted an increasing
interest of many researchers in the last twenty years [1],
[2], [5] and [11]. Descriptor systems appear in many
applications, either during the study of regular systems
(linearization of implicit systems, interconnection
between sub-systems, inversion of systems, multi time
scale systems,...), or as a process model (electrical
networks, robotics, economics,...). Comparison of some
specific characteristics between the regular and the
singular cases points out that the latter is not a trivial
extension of the regular case.

The bond graph methodology leads to unified
representation and the same calculation procedure of the
state equation, whatever the physica domain. Some
problems occur when agebraic loops or derivative
causalities appear in the bond graph model, which may
induce manipulations on the equations to avoid
simulation difficulties.

This paper is organized as follows: section 2 establishes
the problem statement, in section 3 we present the
variables in a bond graph. Then the main result, in the
genera case, is given section 4 and 5: the graphical
determination of matrices congtituting a new descriptor
form on Bond Graph models, and the symbolic calculus
of the coefficients of the generalized characteristic
polynomial based on causal cycle families gains.

2. Problem Statement
Let us consider the genera linear time invariant
multivariable state model, described equation (1)

1 EX(t) = Ax(t) + Bu(t)
1 y(t) = Cx(t) + Du(t)

with the state vector x1 A", the input vector ul A™and
the output vector yT AP .

D)

If E is non singular, the system is said to be regular,
equation (1) can be written as (2):

1x=Ax+Bu @

1l y=Cx+Du

where A =E'A, B =ZE'B

If E is a singular matrix, eguation (1) represents a
descriptor system.

The solvability of model (1) is defined as the existence of
a unique solution for any given control function
sufficiently differentiable u(t) and any given admissible
initial condition x(0). In the frequency domain, the use of
Laplace transform leads to write Eqn.(1) as Egn (3), with
necessary and sufficient conditions of existence and
unicity for the solution.

The strongest condition is det (sE - A) * 0. for amost
every S| "

I (SE - A)X(s) = E.x(0)+ BU (s)

! (3

0 Y(s)=C.X(s)+ DU (s)
In this case, the pencil (sE-A) isregular. The output and
the input under null initial conditions (Ex(0) = 0) are
related by the non strictly proper transfer function, as
follows:

Y(s) = T(9).U(s)
with  T(s) = C(sE-A)'B+ D

In the generalized case, the choice of the initial vector



X(0) must not be arbitrary and must verify some
conditions of consistency. The response of the system
can exhibit:
4 d exponentia modes.
where d = deg{det(sE-A)} £ r = rank(E)

rank(E) isthe actual order of system.

the equality r = d occursin the regular case.
4+ (r-d) impulsive (or distributional) modes
corresponding to (SE-A) losing rank at s = ¥, hence to
poles at infinity.

The solvability of descriptor system is one of the main
structural properties which every study must begin with,
their important role appears precisely when studying
infinite structure from the transfer function of the system.

3. Bond Graph Approach

We study here the case where the bond graph model
contains some |, C-elements in derivative causality when
an integral causality assignment is performed.

The state vector X = & 9 is composed of the energy
gxd (%]

variables associated with the | and C dynamical elements
respectively in integral and derivative causality.

dmx = dim X + dim X, = N+ Ny
The assumption is made that there is no signal bond in
the bond graph model. For sake of simplicity, we will
suppose in the following that there are no agebraic loops
between R-elements in the studied bond graph mode.

The different state, input and output vectors are
represented by:
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We recall here the definition of the causal path generalized
length was introduced in [7] as an extension of the
definition of the causal path length [8] and the zero-order
causal path [12]

Definition 1
i) The generalized length, denoted LY, of a causa path
from an element g to an element e,, where g belongs
to the st {R,S,,S,,l,C} and e, belongs to
{De,Df}, isequal to k, given by (4):
k=(- 27 (N - N) 4

where,

s = 0 if an preferred integral causdlity assignment is
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performed on the bond graph model,

s = 1 if a preferred derivative causality assignment is
performed on the bond graph model,

N, (resp. Np) is the number of | or C-elements in
integral (resp. in derivative) causality met when
following the causal path from € to ;.

i) If e belongs to{Se,Sf, R, I,C} and e; belongs to
{1,C}, the generalized length of the causal path between

€ and € isequal to (k+1) and noted LJ,, .

Remark
Here we will only consider the casewhere s = 0. The
case s = lisused for the input —output decoupling .

Definition 2
A closed causal path which contains severa {I,C}
elements (with any causality) is called a causal cycle.

4. Symbolic Calculus of the state space
representation
4.1 Representation of a Linear descriptor

system from a Bond Graph

The descriptor system is represented by equation (1) with
E asingular matrix

Equation (1) can be written as follows:

%ni EIdOa(O %ﬁ 0
AN At AN o AT

The expression of submatrices composing E, A, and B in
equation (5), are deduced from the junction structure
equation built from the bond graph model.

The different vectors involved in a bond graph are linked
through the junction structure as:

gexi 6 €S, S, Si Sy @gezi 6
e uy. :

gzd : _ é821 0 0 824 l:l ng _(6)
= X 0 -
(}Di: gssl 0 3 SM@gDoi
gY g 8841 S42 843 SAA Heu ﬂ

Sy is anull matrix because two dependent variables {(I,
C) in derivative causdity } are not directly causally
connected (it is possible to simultaneously change their
causality to obtain two dynamical elements in integral
causality). S;; and S, are also null matrices because it is
impossible to have a derivative causality on elements| or
C causally connected to linear R- elements (it is possible
to exchange the causalities).

Elementary laws are associated with components:



z=Fx% .
X4 = (Fo) ™ z4 @)
Dout =L Din

Z ,Zy are caled complementary state vectors, and F; , Fq
are diagonal matrices composed of 1/ and 1/C
coefficients. These matrices are aways invertible for
bond graph models without multiport elements.

Din, and Dy, dencte the vectors composed of variables
flowing respectively into and out of the R-components ;
L is a diagonal matrix composed of resistance and
conductance parameters.

From (6) and (7) comes:
|(| - S4L) D, =S, F x +S,u
%Xi - S, % =S;F % +S;LD +S,u
’:\Fd Xs = SyF % +S,u

which combined with (5) gives:

i Eid - Slz
Ay = Sy F

— 8
: Aw = - Fy ®)
1 By =Sy

Both matrices A and B; keep the same expression,
as developed in [10]:

A= [Su+ Sil(l- Sel) ' SulF

Bi =[S+ Sil(l- Seal) " S )

(I = the identity matrix of appropriate dimension).

4.2 Symbolic calculus of Generalised

state equation
The symbolic caculus of the descriptor form (5) for
continuous linear singular systems directly, from their
bond graph model ams to alow many structura
properties study.

Determination of the E-matrix

Proposition 1
Inthe E;, - matrix, the element (€ ) ; -term is obtained
by expression (10):
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(eid)jk =- é (éLg ((Xd )k’(Xi)j))p (10)

where k 1 {1..nd } and j 1 {1..ni}
éL% ((%3)s(%);) is the constant term of the gain of

the causal path of generalized length LI from(x,), to
(xi)j,(Ni:O, N, =0).
P isthelist of all causal pathslinking (X,), to (%)

Determination of the A-matrix
A is caculated independently of the elements in
derivative causdity as in the regular case (see
appendix).
A= -Fq diagonal matrix composed of the
parameters associated with | and C elements
composing X, , with negative sign.

A, represent causal relations between X and X; .

Proposition 2

In the Aq -matrix, the (ag) nj -term is obtained by
expression (11):

(3s)y = & (6, (%), (x)n)) * 30
pl P

(11)
where h 1 {1..nd} and j1 {1..ni}
é—Lg (%), (X)) isthe constant term of the gain of the
causa path of generalized length L3 (N = 0, Ny = 0)
from(X); to (X3)p -
g((%);) isthe constant term of the jth transmittance of
the 1 or C eement in integral causality associated
with (%) -

Determination of the B-matrix
B, is calculated by ignoring elements in derivative
causality asin the regular case (see appendix).
B, is calculated using causa paths between the

inputsuand X .

Proposition 3

In the control matrix By , the term (bg);« is obtained by
(12):

(bg) w = é (GT,_E (Uk1(Xd)j))p (12)

pl P



where k 1 {1...m} and j1 {1...nd}

é’L% (Uy5(Xy) ;) isthe constant term of the gain of the

causal path of generalized length LS (N; = 0, Ny =0)
fromthe (S, or S;) associated with u, to dynamical
element (1,C) in derivative causality associated with
(%);-

Example

Consider the electrica system (figure 1) and the
associated bond graph model (figure 2).

Ll
1
— [
C= ¢ =C
E
Figure 1. electronic circuit
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Sy 114 0 A1 10 IR'R,
6
7 8
C:G 10 AL,

Figure 2: Bond graph model

The I,, C, and C, arein integral causdlity, C; isin
derivative causality.

The different vectors are given by:
éx.u €n,U
~ e u
ex, U % i
= 6% G ana u =[] =[]
gy el

&l &, f

The matrices in equation (1) are obtained as:

:a(i 9:
& o

g 0 0 Ou é 0 u
E:é) 10 +mB:§Big:§1/Rll:J
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@ 00 0¢g g 0§
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é 1 u
g0 0 < 0
e u
6o ~L,-1 1 4q
A=S RC RC RG, u
€1 1 -1 u
e— —5 od
el CR RC,
é 1 -1 -1a
0 ~ — =
é G G, Gi
Remark

The last row of A represents the algebraic equation
showing the dependancy between the independant and

dependent state variables:

5. Bond Graph Interpretation of

det [SE -A]
The characteristic polynomial is equal to the denominator
of the transfer function T(s) = C(sE- A)'B, expressed

n
it y
as. p(E,A)(S) :|SE' N =a ps"'.
i=0
where n= dimx +dimxy = n+ng

In the following, a graphical interpretation of the
polynomial coefficients is presented. This method is
based exclusively on causality handling and causal cycle
families concept. Because the bond graph model contains
some elements in derivative causality, it requires a new
definition of the order of acausal cycle.

Definition 3
A causal cycle family is a set of digoint causal cycles.
This family is said to be of order t, if this family contains
N; independent dynamical elements and Ny Statically
dependent elementswith relation t = N; - Ng.

Remark

Contrary with the generalized length of a causal path, any
possible combination of digoint causal cyclesto obtain a
precise order is accepted .

Proposition 4
Each coefficient p; of pea(S) isequal to the sum of the
constant terms of the gain of causal cycle families of
order i - Ny in the bond graph model.
Each causal cycle family gain has the sign (-1)? if the
family under consideration has d digoint causal cycles.

* for i=0,1,...,nand il Ny



o 13
N ) &

*If 1= Ny, P, isrelated to causal cycle families of
order zero (t= 0). Itsexpression is given as.

A+ (160
é i
P g(xy)

OC\C

P, = (14)

where

j : thejth. causal cycle family of order i - Ng.

d;: number of digoint causal cycles constituting the jth.
family.

g(X,): the constant term in transmittance of elements

{I, C} with a derivative causality in the bond graph

model. g (14) =1, ad g(C,)=C

é; Na - the gain constant term of jth. causal cycle family
of i- Ng order.

[llustrative Example

The bond graph model of figure (2) has three dynamical

So the characteristic polynomia can be written as:
— 4 3 2 1
P(E,A)(S) =PeS PSS +P,ST PSP,y

The bond graph model does not contain any causal cycle
family of order (-1) (causal boucle between resistive
element and dependent element ), po = 0.

The p;iscaculated using formula (14) (i - Ng=0). but
P2, ps and p, are determined by formula (13). For sake of
simplicity, only the calculation of coefficients p; and p4
of characteristic polynomial is developed. The table 1
gathers the causal cycle families required for the
calculation of these coefficients.

e 1 & C,a

p, = g(C)ge a+(- )g S +(1)1g C_z%
u
lJ
u

i)
aeloe 3 C,
e C

C3ge C,

1 oael Cou

gcw,eRC gRlc RClg gRlc Cm
C,g éR,.C,RC, LC, LC,.Cy

%10%1 0%1 1(1'

elements in integral causdlity (C.;,C,l;)) and one p, =
dependent element C3 (n=4, n, = 3, ng= 1). ) C g'— C,5 &RC, R C1 m
Coefficient p; | Corresponding Causal Cycle Familiesin the Gains
bond graph model
P1
two causal (@) (Ca- C): furtatstrerereren > (@=1) | x0_-C
cycles families 1 C
of zero order (2). (C5-Cy) : frpfo- o T~ €- @5~ €9- €19 > d=1) | ~ o_- C3
(i -Na=0) 2" C,
Pa B e (1 e D
1. cyclecausdl family: {(Ry.Cy); (11,C2)} > (d=2) | ~, +1
T
cauaal cycles (Ry,Cy) : fo-fsfrere5-€ RCC.L,
families of order (I1,C) : fofreres
3. (i-Ng= 3). _ G2 = +1
2. cycle causdl family: :{(Rz,C;); (11,C2)} 2> (d=2) R,C,C,L,
(R2,Cy) : fir-fo-fs-fo-es-65-€0-€11
(11,C2) : fefrer-eg




6. CONCLUSION

In this paper we have proposed a representation of
singular system deducted from the bond graph model.
Then, the symbolic calculus of this representation is
given. It is followed by a method, based exclusively on
causality handling and concept of causal cycle families
allowing the symbolic determination of characteristic
polynomial. These results are necessary for the structural
properties analysis like controllability, observability...

7. REFERENCES

[1] S. L. Campbell, "Singular systems of differential
equations’, San Fransisco, Pitman, 1980.

[2] D. Cobb, "Descriptor variable and generalized
singularly perturbed systems’, Ph. Thesis, Department of
Electrical Engineering, Univ. of Illinois, 1980

[3] D.C. Karnopp, "Alternative Bond Graph Causd
Patterns and Equations Formulation For Dynamics
Systems’, Journal of Dyn. Syst. ,Meas., and Control,
ASME, , June 1983, pp. 58-63.

[4] D. Lefebvre, "Commande par Précompensation
Dynamique des Systémes Généralisés'. PhD thesis, Univ.
of Lille, 1994.

[5] G. Luenberger , "Dynamic Equation in Descriptor
Form ", |IEEE Transactions on Automatic. Control, vol.
Ac-22, N°3, 1977.

[6] B. M. Maschke, M. Villarroya, "Properties of
descriptor systems arising from bond graph models’,
Math. and Comptersin simulation 39, 1995, pp. 491-497.
[71 A. Rahmani & G.Dauphin-Tanguy, "Symbolic
Determination of State Matrices from Bond Graph
Model With Derivative Causdlity”. In Proc. of
Computational Engineering in System Applications.

[8] A. Rahmani, "Bond Graph Approach for Sructural
Sudy of Linear Systems', PhD thesis, Univ.of Lille, 1993.
[9] K. J. Reinschke, "Graph Theoretic Approach to
Symbolic Analysis of Linear Descriptor Systems', Linear
Algebra and its applications, 197-198, pp. 217-244, 1994.
[10] R.C. Rosenberg, "State Space Formulation for Bond
Graph Models of Multiport Systems', Journal of Dyn.
Syst. ,Meas., and Control, ASME, March 1971, pp. 35-40.
[11] H.H Rosenbrock, "Structural properties of Linear
Dynamica Systems', Int. Jour. Cont., Vol. 20, 1974..

[12] J. Van Dijk & P.C Breedveld "Simulation of systems
models containing Zero- Order Causal Paths |.
Classification ", Journal of the Franklin Ingtitute, vol.
328B, N°5/6, 1991, pp. 981-1004.

APPENDI X
Definition
The gain of a causa path in a bond graph model
isgiven by (Al):
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G(9) =(- )”°“‘1*o( )“'*5( Jo+T.(9

=1
with
N, : the total number of arrow reversals at O-junctions,

when the path follows the flow variable,
n,: the total number of arrow reversals at 1-junctions,

when the path follows the effort variable,

a: : the number of TF-elements in the path,

b : the number of GY-elementsin the path,

m and r; are respectively the ith TF and the jth GY

modulus,

h = + 1depending on the ith TF causality assignment,

k; = = 1depending on the jth GY causality assignment,
T. (9): the product of transmittances of the (I, C, or R)-
elements involved in the causal path. If no (I, C, or R)-
elements are involved in the causal path, then T, (s) = 1
The congtant term of G(s), when it depends on the

Laplace operators is denoted G obtained by suppressing
the s-operator in G(S).

Symbolic determination of the A and B for linear regular
system directly from the bond graph model.
Property 1
In the state matrix A, the elements @, is obtained by
equation (A2):
o ~ ~
= & (G, (xx)) *8(x)

pi P
n}

where h1 {1...
GLl (Xh » X ) is the constant term in the gain of the causal path

(A2)

nfad jT {1..

of length L, from the | or C elements associated with X, to

those associated with X; . g(Xh) is the constant term in the

gainof X, Gl )—E and §(C)==

Property 2
In the control matrix B;, theterm by, is obtained by (A3):
o
b Kk = a (G

3 G, (. x,)), @9
pl P

vt m} and T {1..n}

G, (uk, J) is the constant term in the gain of the causal
path of length L, from the (S, or S;) associated with

where ki {1. .

U, tothel or C elements associated with X; .



